Reducing the Cross-Beam Energy Transfer in Direct-Drive Implosions Through Laser-Irradiation Control

W. Seka University of Rochester Laboratory for Laser Energetics 41st Annual Anomalous Absorption Conference San Diego, CA 19–24 June 2011

LLE

The loss of hydrodynamic efficiency in direct-drive implosions caused by cross-beam energy transfer can be reduced by changing the irradiation conditions

- Cross-beam energy transfer (CBET) is due to low-gain SBS sidescattering
- EM-seeding of SBS sidescattering is due to outer parts of one beam crossing the inner parts of another beam
- Beam sizes smaller than the target size reduce CBET, but may increase the illumination nonuniformity
- Experiments with different illumination geometries and detailed spectral analyses have significantly increased our understanding of CBET

I. V. Igumenshchev, D. H. Edgell, D. H. Froula, V. N. Goncharov, J. F. Myatt, A. V. Maximov, and R. W. Short

Laboratory for Laser Energetics University of Rochester

Cross-beam energy transfer involves EM-seeded, **low-gain SBS sidescattering**

 EM-seed is provided by outer parts of beams

UR 🔌

- Inner parts of beams transfer some of their energy to outgoing parts of other beams
- This process reduces
 hydrodynamic drive efficiency
- Reducing the beam size can reduce cross-beam energy transfer

Large-shell, room-temperature implosions demonstrate reduced CBET for narrower beams on target

- Large targets: 1400-μm diam
- Phase plates:
 - SG4 focused (860- μ m diam at 5% intensity) \rightarrow narrow focus
 - SG4 defocused (1400- μ m diam at 5% intensity) \rightarrow wide focus

Cross-beam energy transfer significantly affects the time-resolved scattered power

• Near-absence of CBET

 simulations with and without cross-beam energy transfer are nearly identical

Reducing CBET increases the drive efficiency and causes the x-ray bang time to occur earlier

The reduced hydrodynamic drive caused by CBET is evident in experimental scattered light spectra

The reduced hydrodynamic drive caused by CBET is also evident in experimental scattered light spectra

The reduced hydrodynamic drive caused by CBET is also evident in experimental scattered light spectra

LLE

At low intensities ($<4 \times 10^{14}$ W/cm², overlapped) the LILAC predictions with CBET for scattered light are within 2% of time-integrated measurements

$3\omega/2$ spectra are indicative of TPD near the Landau cutoff, typical of the nonlinear state of this instability

$3\omega/2$ spectra are indicative of TPD near the Landau cutoff, typical of the nonlinear state of this instability

The scattered-light spectra of imploding targets with narrowand wide-focus illumination agree with CBET predictions

The scattered-light spectra of imploding targets with narrowand wide-focus illumination agree with CBET predictions

CBET using the clamped SBS model cannot spectrally be distinguished from the full SBS model

The scattered-light spectra are poorly modeled with only nonlocal transport or standard f = 0.06 flux limiter

1-D *LILAC* simulations with CBET indicate higher absorption but increased drive nonuniformity for beams smaller than the target

Summary/Conclusions

The loss of hydrodynamic efficiency in direct-drive implosions caused by cross-beam energy transfer can be reduced by changing the irradiation conditions

- Cross-beam energy transfer (CBET) is due to low-gain SBS sidescattering
- EM-seeding of SBS sidescattering is due to outer parts of one beam crossing the inner parts of another beam
- Beam sizes smaller than the target size reduce CBET, but may increase the illumination nonuniformity

• Experiments with different illumination geometries and detailed spectral analyses have significantly increased our understanding of CBET

$\omega/2$ spectra probe different phase space of TPD with slightly different time-evolution from $3\omega/2$ spectra

Time-integrated images of the imploding target are edge-enhanced and may also reflect cross-beam energy transfer

