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In direct-drive ICF plasmas, the nonlinear interaction 
between incoherent crossing laser beams leads to 
scattering, strongly influenced by the hot-spot structure

TC9440

Summary

•	 Nonlinear propagation of laser beams near their turning points 
provides a seed for scattering in the lower-density region.

•	 At moderate plasma densities, about 0.3 nc to 0.6 nc, 
interaction between crossing laser beams can lead to  
a local reflectivity exceeding 20%.

•	 The hot-spot structure strongly influences

–	 the direction of scattered light

–	 the reflectivity scaling with intensity



Outline
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1.	 Motivation from large-scale modeling of laser propagation  
and absorption

2.	Nonlinear propagation of laser beams near their turning points

3.	Nonlinear interaction between crossing laser beams at moderate 
plasma density about 0.3 nc to 0.6 nc

4.	 Interaction between multiple laser beams incident at different angles



Target

Beam 2

Beam 1

Center-beam ray

Cross-beam
energy transfer
is favorable
near M ~ 1

Edge-beam ray

In large-scale hydrodynamic simulations,  
crossed-beam energy transfer is shown  
to significantly influence the laser absorption
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•	 Crossed-beam energy 
transfer reduces the energy 
of incoming center-beam rays 
and increases the energy of 
outgoing edge-beam rays

•	 In direct-drive implosions 
there are multiple crossing 
beams

	I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010).



Modeling of beam-to-beam coupling is based  
on the stimulated Brillouin scattering (SBS) gains
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	 *	I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010).
	**	P. Michel et al., Phys. Rev. Lett. 102, 025004 (2009).

•	 For direct-drive ICF plasmas the interaction between rays*:

•	 For indirect-drive plasmas**
–	 the propagation operators are applied to amplitudes 
of NIF beam centroids
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Near the beam turning points, obliquely incident beams 
can seed scattering from other beams

TC9443 A. V. Maximov et al., Phys. Plasmas 11, 2994 (2004).
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In the region of moderate plasma density, about  
0.3 nc to 0.6 nc, the nonlinear propagation of crossing 
laser beams has been modeled  
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The backscatter depends on the electromagnetic seed, 
which is due to opposing beams or to turning beams

TC9501 *H. A. Rose and D. F. DuBois, Phys. Rev. Lett. 72, 2883 (1994).

Scattering from a single DPP beam*
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The threshold for the nonlinear backscattering  
driven by crossing laser beams has been found  
at moderate laser intensities 
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•	The intensities of the two driving beams are different by a factor of 10.
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The hot-spot structure determines the direction of scattered light.
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In the case of incident beams of unequal intensity  
with smaller angular width, the backscattering  
for both beams is of the same order
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The reflectivity scaling is influenced 
by the hot-spot structure.



In the case of symmetrically incident laser beams  
close in intensity, the backscatter reflectivity  
is moderately higher
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The interaction of incoherent crossing laser beams  
with plasmas produces a broad spectrum  
of low-frequency density perturbations
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At moderate densities, the interaction between beams 
incident at different angles leads to a broad spectrum 
of backscattered light
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The interaction between multiple obliquely incident beams 
at moderate densities can increase the backscatter
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Summary/Conclusions

In direct-drive ICF plasmas, the nonlinear interaction 
between incoherent crossing laser beams leads to 
scattering, strongly influenced by the hot-spot structure

•	 Nonlinear propagation of laser beams near their turning points 
provides a seed for scattering in the lower-density region.

•	 At moderate plasma densities, about 0.3 nc to 0.6 nc, 
interaction between crossing laser beams can lead to  
a local reflectivity exceeding 20%.

•	 The hot-spot structure strongly influences

–	 the direction of scattered light

–	 the reflectivity scaling with intensity

•	 For comparison with the ray-based model, the importance of 
hot spots for backscatter and reflectivity scaling in large-scale 
modeling is being studied.


