Simulation and Analysis of Long-Scale-Length Plasma Experiments at the Omega EP Laser Facility

S. X. Hu University of Rochester Laboratory for Laser Energetics 41st Annual Anomalous Absorption Conference San Diego, CA 19–24 June 2011

DRACO simulations show long-scale-length plasmas created on OMEGA EP approach NIF conditions

 To study LPI processes in NIF-scale plasmas, planar-target experiments are performed using large distributed phase plates at the Omega EP Laser Facility

- Long-scale-length plasmas of $L_n \sim 300$ to 400 μ m, close to direct-drive NIF conditions, have been created with beam energies currently available on OMEGA EP
- Two-dimensional DRACO simulations predict the hydro-evolution of such long-scale-length plasmas
- Temporal evolution of fast-electron generation from two-plasmon-decay (TPD) instability is characterized with the TPD threshold parameter

D. H. Edgell, D. H. Froula, V. N. Goncharov, W. Seka, S. Skupsky, and B. Yaakobi

> Laboratory for Laser Energetics University of Rochester

Direct-drive NIF designs require accurate assessments of LPI processes in long-scale-length plasmas

Planar-target experiments have been performed on both OMEGA and OMEGA EP using large distributed phase plates (DPP's)

NIF-scale plasmas can be created on OMEGA EP for LPI studies

• By varying the beam energy and DPP size, long-scale-length plasmas of $L_n \sim 450 \ \mu m$ can be created on OMEGA EP

UR

- Simulations indicate 2-ns square pulses produce better NIF-condition plasmas, while longer pulses do not increase the density scale length
- Due to the spot-size restriction (SG-4/SG-8) and large beam angles, the plasma scale length can reach to only $L_n \sim 300 \ \mu m$ on OMEGA

Pre-shot simulations indicate that long-scale-length $(L_n \sim 340 \text{ to } 440 \ \mu\text{m})$ plasmas can be created on OMEGA EP

The intensity dependence of coronal conditions predicted by DRACO is consistent with analytic model predictions*

*Eq. (7.67), Atzeni and Meyer-ter-Vehn, "The Physics of Inertial Fusion" (Oxford, 2004).

Long-scale-length ($L_n \sim 300 \ \mu$ m) plasmas have been produced on OMEGA planar experiments

*A. Simon et al., Phys. Fluids 26, 3107 (1983).

When the rarefaction wave "sweeps" the quarter-critical regime, the scattered light catches that signal

LLE

The time-resolved hard x-ray signals from OMEGA EP experiments are well characterized by the hydro-predicted η

The time-integrated Mo-K $_{\alpha}$ signal and fast-electron temperature depend nonlinearly on η

LL

2-ns square pulse

TPD experiments with varied ablator material have been scheduled in August on OMEGA EP

Material	ho (g/cc)	$\langle {\sf Z} angle$	$L_n(\mu m)$	T _e (keV)	I _{qc} ×10 ¹⁴ (W/cm²)	$TPD_{-\eta}$
СН	1.044	3.0	350	2.10	2.6	1.8
Parylene	1.42	5.5	290	2.30	2.3	1.3
Saran	1.70	8.0	300	2.35	2.2	1.2
SiO ₂	2.33	10.0	300	2.45	2.0	1.1
ΑΙ	2.70	13.0	250	2.55	1.8	0.8

Parylene: C₈H₆Cl₂ Saran: C₂H₂Cl₂ OMEGA EP: pulse: EP9165 Energy: 7.1 kJ; 2-ns square LL

DRACO simulations show long-scale-length plasmas created on OMEGA EP approach NIF conditions

 To study LPI processes in NIF-scale plasmas, planar-target experiments are performed using large distributed phase plates at the Omega EP Laser Facility

- Long-scale-length plasmas of $L_n \sim 300$ to 400 μ m, close to direct-drive NIF conditions, have been created with beam energies currently available on OMEGA EP
- Two-dimensional DRACO simulations predict the hydro-evolution of such long-scale-length plasmas
- Temporal evolution of fast-electron generation from two-plasmon-decay (TPD) instability is characterized with the TPD threshold parameter