Thomson-Scattering Study of the Coronal Plasma Conditions in Direct-Drive Implosions

D. H. Froula *et al.* University of Rochester Laboratory for Laser Energetics 41st Annual Anomalous Absorption Conference San Diego, CA 19–24 June 2011

The electron and ion temperatures measured with Thomson scattering show agreement with nonlocal simulations

- A robust direct-drive-ignition design will require accurate modeling of the underdense plasma to allow laser–plasma instabilities (LPI) mitigation
- Thomson scattering is used to validate our nonlocal hydrodynamic model in the coronal plasma
 - simulations agree well with electron and ion-temperature measurements made 400 μ m from the initial target surface
 - simulations over-estimate the fluid velocity by 20%
- Future experiments will explore regimes closer to the critical surface

These are the first measurements of direct drive coronal conditions.

Collaborators

D. H. Edgell, W. Seka, I. V. Igumenshchev, P. B. Radha, and V. N. Gonchorov

> University of Rochester Laboratory for Laser Energetics

> > J. S. Ross

Lawrence Livermore National Laboratory

Two primary laser-plasma instabilities are a concern for direct drive and require an understanding of the underdense hydrodynamics

S. X. Hu, "Simulation and Analysis of Long Scale-Length Plasma Experiments at the Omega EP Laser Facility," this conference. W. Seka, "Reducing the Cross-Beam Energy Transfer in Direct-Drive Implosions Through Laser-Irradiation Control," this conference.

A robust direct-drive-ignition design will require accurate modeling of the underdense plasma to allow LPI mitigation.

*A. Simon et al., Phys. Fluids 26, 3107 (1983).

Thomson-scattering measurements were performed on direct-drive low-adiabat-implosion experiments

- 20 kJ of 351-nm light (59 beams) is used to drive a standard implosion
- Triple-picket pulse shape is designed for a low adiabat
- A 263-nm probe beam is used for Thomson scattering
- Scattered light is collected from a 60- μ m \times 75- μ m \times 75- μ m volume 400 μ m from the initial target surface
- Ion-acoustic waves propagating along the target radius are probed

UR 🔌

 $k_a = 2 k_{4\omega} \sin(63/2) = 1.0 k_{4\omega}$

Nonlocal hydrodynamic simulation parameters in the coronal plasma

The initial Thomson scattering measurements are made 400 μ m from the initial target surface.

Thomson scattering from the ion-acoustic waves in CH plasmas provides a measure of T_e , T_i , V_f

LLE

The electron temperature is determined from the wavelength separation in the ion-acoustic features

• The electron temperature is given by the wavelength separation of the ion-acoustic features

• The electron temperature is measured to within 20%

The measured electron and ion temperatures are in good agreement with nonlocal hydrodynamic modeling

- Late-time temperature discrepancies indicate anomalous absorption
- Simulations over estimate the flow velocity by 20%

4ω light reflected from the target probes plasma properties at the $n_{\rm cr}/4$ surface

E19922

The wavelength shift and absorption of light propagating through the turning point is modeled

Hydrodynamic simulation (nonlocal model)

Many of the main features are reproduced by the simulations, but late-time discrepancies indicate over-estimated flow

Scattered light provides information about the hydrodynamic properties at the $n_{cr}/4$ surface.

The electron and ion temperatures measured with Thomson scattering show agreement with nonlocal simulations

- A robust direct-drive-ignition design will require accurate modeling of the underdense plasma to allow laser–plasma instabilities (LPI) mitigation
- Thomson scattering is used to validate our nonlocal hydrodynamic model in the coronal plasma
 - simulations agree well with electron and ion-temperature measurements made 400 μ m from the initial target surface
 - simulations over-estimate the fluid velocity by 20%
- Future experiments will explore regimes closer to the critical surface

These are the first measurements of direct drive coronal conditions.