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The electron and ion temperatures measured with Thomson 
scattering show agreement with nonlocal simulations

E19915

•	 A robust direct-drive-ignition design will require accurate modeling 
of the underdense plasma to allow laser–plasma instabilities (LPI) 
mitigation

•	 Thomson scattering is used to validate our nonlocal hydrodynamic 
model in the coronal plasma  
		  –	 simulations agree well with electron and ion-temperature 		
 			   measurements made 400 nm from the initial target surface
		  –	 simulations over-estimate the fluid velocity by 20%

•	 Future experiments will explore regimes closer to the critical surface

These are the first measurements of direct drive coronal conditions.

Summary
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Two primary laser–plasma instabilities are a concern 
for direct drive and require an understanding of the  
underdense hydrodynamics
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A robust direct-drive-ignition design will require accurate modeling  
of the underdense plasma to allow LPI mitigation.
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Two-plasmon decay scales with
hydrodynamic properties at ncr/4
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Calculations suggest an optimum
spot size where CBET is minimized
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S. X. Hu, “Simulation and Analysis of Long Scale-Length Plasma 
Experiments at the Omega EP Laser Facility,” this conference.

W. Seka, “Reducing the Cross-Beam Energy Transfer in Direct-Drive 
Implosions Through Laser-Irradiation Control,” this conference.

*A. Simon et al., Phys. Fluids 26, 3107 (1983).



Thomson-scattering measurements were performed  
on direct-drive low-adiabat-implosion experiments
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•	 20 kJ of 351-nm light (59 beams) is 
used to drive a standard implosion

•	 Triple-picket pulse shape is 
designed for a low adiabat

•	 A 263-nm probe beam is used  
for Thomson scattering

•	 Scattered light is collected  
from a 60-nm × 75-nm × 75-nm 
volume 400 nm from the initial 
target surface

•	 Ion-acoustic waves propagating 
along the target radius are probed
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Nonlocal hydrodynamic simulation parameters in the 
coronal plasma
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The initial Thomson scattering measurements  
are made 400 nm from the initial target surface.
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Thomson scattering from the ion-acoustic waves  
in CH plasmas provides a measure of Te, Ti, Vf
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The electron temperature is determined from the 
wavelength separation in the ion-acoustic features
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•	 The electron temperature is given by the wavelength 
separation of the ion-acoustic features

•	 The electron temperature is measured to within 20%
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The measured electron and ion temperatures are in good 
agreement with nonlocal hydrodynamic modeling
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•	 Late-time temperature discrepancies indicate anomalous absorption

•	 Simulations over estimate the flow velocity by 20%
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4~ light reflected from the target probes 
plasma properties at the ncr/4 surface

E19922

262.5

264.0

264.5

265.0

265.5

0.0 0.4 0.8–0.4–0.8

Time (ns)

4~ Thomson scattering, shot 59726

Target

300 nm

200 nm

4~ light is 
reflected from 

the ncr/4 surface

30 nm
Thomson
scattering

Turning-point
reflection

W
av

el
en

g
th

 (
n

m
)

263.0

263.5

263.0

263.5

300 m

30 m
200 m

-I
I

exp
2

10-
0

2
10.

n

n

n
=

^
f

h
p> H



The wavelength shift and absorption of light  
propagating through the turning point is modeled
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Many of the main features are reproduced by the simulations, 
but late-time discrepancies indicate over-estimated flow
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Scattered light provides information about the 
hydrodynamic properties at the ncr/4 surface.



The electron and ion temperatures measured with Thomson 
scattering show agreement with nonlocal simulations
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•	 A robust direct-drive-ignition design will require accurate modeling 
of the underdense plasma to allow laser–plasma instabilities (LPI) 
mitigation

•	 Thomson scattering is used to validate our nonlocal hydrodynamic 
model in the coronal plasma  
		  –	 simulations agree well with electron and ion-temperature 		
 			   measurements made 400 nm from the initial target surface
		  –	 simulations over-estimate the fluid velocity by 20%

•	 Future experiments will explore regimes closer to the critical surface

These are the first measurements of direct drive coronal conditions.

Summary/Conclusions


