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Cross-Beam Energy Transfer in Polar-Drive Implosions
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Cross-beam energy transfer (CBET) predictions 
show significant absorption profile modifications  
in Polar Drive (PD)

E19898

Summary

• EM-seeded SBS transfers energy between direct-drive laser 
beams that cross in the coronal plasma

  –  preventing energy from reaching the high absorption region

• CBET can reduce the laser absorption in symmetric implosions 
and must be included for simulations to match experiments

• CBET has been calculated for a nonsymmetric polar-drive 
configuration (predictions indicate ~10% reduction in absorption 
for OMEGA PD)

• CBET must be included in PD implosion modeling and its 
mitigation through phase plate design will be studied 
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EM-seeded SBS cross-beam energy transfer causes 
some laser energy to “bypass” the high-absorption zone

E17994a

• Ion-acoustic wave (IAW) 
transfers energy from a “pump” 
EM wave (light entering plasma) 
to a “seed” EM wave (light leaving 
plasma)

  

Cross-Beam Energy Transfer

Because the EM-seed amplitude 
is of the same order as the pump, 
very small gains of only a few 
percent can significantly reduce 
the absorbed energy.
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Accurate simulations of direct-drive implosions  
on OMEGA require CBET in the hydrocode*

E19899

*W. Seka, “Reducing the Cross-Beam Energy Transfer in Direct-Drive Implosions    
  Through Laser-Irradiation Control,” this conference.
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Direct-drive experiments on the NIF require  
the nonsymmetric polar-drive geometry

TC6468c

• Quasi symmetric intensity  
on target is achieved through  
a combination of spot shape,  
pulse shape, and beam-pointing  
control.

• Repointing beams from the x-ray-
drive pointing leads to higher  
angles of incidence at the equator 
relative to the pole.

• The effects of CBET on beam intensity 
and uniformity with repointed  
PD beams is now modeled.
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CBET has been examined using our scattered light 
simulation code for a 3-D PD geometry on OMEGA

E19900

• OMEGA PD symmetry exploited  
to simplify calculations

• Ray tracing used to calculate the paths 
and Doppler shifts of many beamlets 
on a square grid covering the target for 
each PD cone angle

• All the beam crossings and CBET  
are calculated at each point along  
a beamlet path 
   –  no feedback into hydrocode

• Power transfer for many different beam  
profiles and pointings do not require 
new raytrace or CBET calculations

• The change in intensity for each  
beamlet due to the spreading area  
is calculated from the divergence  
of closely spaced satellite rays  
near the beamlet center
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Resonance function* (P) is a measure of how close the 
conditions are to resonance for SBS cross-beam transfer

E17999a  * C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).
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Iterative calculations find the energy lost/gained 
along each beamlet for a beam

E17997b

• The strength of the transfer is estimated using the spatial gain length* LSBS 
for crossing planar waves

• The rate of change in intensity  
due to cross-beam transfer  
and absorption can be integrated  
along each path to determine  
the intensity
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*J. F. Myatt et al., Phys. Plasmas 11, 3394 (2004).
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The integral of absorbed energy along the beamlet path 
shows no fine structure with symmetric illumination  
and without CBET

• Symmetric illumination  
on OMEGA

  – 60 beams (4 cones)
  – pointed at TCC

• Plastic shell target
  – ~900 nm diameter



Including CBET with symmetric illumination transfers 
energy from inner beam and reduces the absorption

E19903

dE
s

abs/dE
s

abs/ dE
s

CBET/
AbsorptionAbsorption SBS energy transfer

–400 0 400
nm

Symmetric with CBET

–400 0 400

79% 68%
400

–400

0 1.2

×108

(W/cell)

nm

n
m

Symmetric without CBET

0.4

0.0

1.4

2.0

0.8

1.2

×108

(W/cell)
×108

(W/cell)

0.4

0.0

1.4

2.0

0.8

–400 0 400
nm

Symmetric with CBET

0.0

–0.8

0.4

0.8

–0.4



PD affects the absorption primarily  
through the beam pointing offset

E19931
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CBET has a measured effect  
on the cones closer to the equator

E19932
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CBET has a measured effect  
on the cones closer to the equator

E19901
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Cross-beam energy transfer (CBET) predictions 
show significant absorption profile modifications  
in Polar Drive (PD)

E19898

• EM-seeded SBS transfers energy between direct-drive laser 
beams that cross in the coronal plasma

  –  preventing energy from reaching the high absorption region

• CBET can reduce the laser absorption in symmetric implosions 
and must be included for simulations to match experiments

• CBET has been calculated for a nonsymmetric polar-drive 
configuration (predictions indicate ~10% reduction in absorption 
for OMEGA PD)

• CBET must be included in PD implosion modeling and its 
mitigation through phase plate design will be studied 

Summary/Conclusions


