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SBS appears to suppress TPD when both  
are above threshold at nc/4

E19024

• Multiple-beam, flat–target interaction experiments have been 
arranged to have SBS, SRS, and TPD go above threshold at the same 
time in about the same region of space.

• 2-D hydrodynamic simulations along with estimates of SBS gain 
factors show that SBS goes above threshold at nc/4 at the same time 
that the TPD instability is significantly above threshold.

• The TPD instability is suppressed as long as SBS is present near nc/4.

• The SRS instability is observed at ne/nc ~ 0.23. Its behavior is 
unaffected by SBS, which occurs at higher densities. 

Summary
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Planar–target experiments are carried out with three 
delayed sets of beams
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The striking observation in these experiments is the almost 
simultaneous onset and termination of SBS and SRS 
followed by the onset of two-plasmon-decay instability

E19026
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These observations suggest 
some interaction between 
these instabilities.



The striking observation in these experiments is the almost 
simultaneous onset and termination of SBS and SRS 
followed by the onset of two-plasmon-decay instability
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The striking observation in these experiments is the almost 
simultaneous onset and termination of SBS and SRS 
followed by the onset of two-plasmon-decay instability
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Two-dimensional SAGE simulations show velocity 
gradients and densities are ideal for SBS near quarter 
critical when the peak of the pulse is reached
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Two-dimensional SAGE simulations show velocity 
gradients and densities are ideal for SBS near quarter 
critical when the peak of the pulse is reached
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E19028  J. Myatt et al., Phys. Plasmas 11, 3394 (2004).
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Mean mach # = 1.27
2.7 Å blue shift

The convective SBS gain factor is estimated by 
integrating the spatial growth rate over the gain length 
determined by damping the ion waves
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The SRS sidescatter threshold* is compatible with 
driving a shared plasma wave that points toward H17
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The calculated TPD threshold peaks early like the SRS threshold 
but is NOT observed experimentally until much later
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The calculated TPD threshold peaks early like the SRS threshold 
but is NOT observed experimentally until much later
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SBS starts at 0.35 ns. At 0.5 ns it is 
predicted to be active right at nc/4 and 
appears to suppress the TPD instability.
When active above nc/4 it still sheds ion 
wave toward nc/4 via supersonic flow.
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The calculated TPD threshold peaks early like the SRS threshold 
but is NOT observed experimentally until much later
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SBS starts at 0.35 ns. At 0.5 ns it is 
predicted to be active right at nc/4 and 
appears to suppress the TPD instability.
When active above nc/4 it still sheds ion 
wave toward nc/4 via supersonic flow.
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The calculated TPD threshold peaks early like the SRS threshold 
but is NOT observed experimentally until much later

E19031c

SBS starts at 0.35 ns. At 0.5 ns it is 
predicted to be active right at nc/4 and 
appears to suppress the TPD instability.
When active above nc/4 it still sheds ion 
wave towards nc/4 via supersonic flow.

• Up to now the TPD threshold 
parameter has been an excellent 
predictor for the TPD instability. 

• This is the first time that SBS 
was observed near nc/4.



SBS appears to suppress TPD when both  
are above threshold at nc/4
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Summary/Conclusions

• Multiple-beam, flat–target interaction experiments have been 
arranged to have SBS, SRS, and TPD go above threshold at the same 
time in about the same region of space.

• 2-D hydrodynamic simulations along with estimates of SBS gain 
factors show that SBS goes above threshold at nc/4 at the same time 
that the TPD instability is significantly above threshold.

• The TPD instability is suppressed as long as SBS is present near nc/4.

• The SRS instability is observed at ne/nc ~ 0.23. Its behavior is 
unaffected by SBS, which occurs at higher densities. 


