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The saturation of two-plasmon-decay instability 
is caused by the broad spectrum of low-frequency 
density perturbations 

TC8854

•	 In the linear stage of two-plasmon-decay instability (TPD),
the convective and absolute growth produces a broad angular 
spectrum of primary Langmuir waves

•	 In the saturation stage of TPD, a broad spectrum of low-
frequency density perturbations is generated, including the 
perturbations at the onset of the Langmuir decay instability

•	 The temperature of the fast electrons, produced in TPD, is 
defined by the spectrum of Langmuir waves, including the 
Landau cutoff

Summary



Outline

•	 The threshold of TPD for OMEGA parameters

•	 The linear stage of TPD growth: absolute and convective

•	 The properties of the fast electrons, generated in TPD

•	 The saturation of TPD



Laser intensity (×1014 W/cm2)
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In OMEGA experiments, the hard x-ray production 
depends on ion composition



The TPD instability threshold is influenced by the 
interplay of plasma inhomogeneity, wave damping, 
and resonance detuning caused by beam incoherence

TC7846c

•	 Plasma-wave 
damping

•	 Detuning due 
to inhomogeneity

•	 Homogeneous 
3-wave growth rate

•	 Detuning due to 
beam incoherence
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Laser intensity (×1014 W/cm2)
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The calculated TPD threshold is in reasonable agreement 
with the hard x-ray onset intensity



The fastest-growing wave vectors change with the 
position in the homogeneous plasmas
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The longitudinal and transverse wave vectors lie on the TPD 
maximum-growth hyberbola.

I = 1015 W/cm2, Te = 2 keV, LN = 150 nm

*R. Yan et al., Phys. Rev. Lett. 103, 175002 (2009).



In the linear stage of TPD, absolute and convective 
growth generates a broad spectrum of Langmuir waves
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PIC simulation

Fluid simulation
(delta function seed)
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I = 1015 W/cm2, Te = 2 keV, LN = 150 nm

Analytical theory*

K=(~0/c)

*A. Simon et al., Phys. Fluids 26, 3107 (1983).



The distribution of fast electrons, generated in the TPD, 
depends on the spectrum of the Langmuir waves
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Te = 2 keV
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Boundary conditions:
•	 periodic (transverse)
•	 thermal (longitudinal)

Also see talk for J. F. MYatt at this conference

20T
k

T2
e
m

e
2

h :+ +
~b l



The plasma spectral density characterizes the  
low-frequency density perturbations driven by  
the ponderomotive force
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The interaction of incoherent laser beams with plasmas 
produces low-frequency perturbations in electron density
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The threshold of the Langmuir decay instability depends 
on the characteristics of ion-acoustic waves 
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Seeding by laser-driven perturbations
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Summary/Conclusions

The saturation of two-plasmon-decay instability 
is caused by the broad spectrum of low-frequency 
density perturbations 

•	 In the linear stage of two-plasmon-decay instability (TPD),
the convective and absolute growth produces a broad angular 
spectrum of primary Langmuir waves

•	 In the saturation stage of TPD, a broad spectrum of low-
frequency density perturbations is generated, including the 
perturbations at the onset of the Langmuir decay instability

•	 The temperature of the fast electrons, produced in TPD, is 
defined by the spectrum of Langmuir waves, including the 
Landau cutoff


