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A fluid-type Zakharov model is used to model TPD decay 
for parameters of OMEGA implosion experiments

TC8451

 •	The waves saturate through the LF (ion) plasma response 
	 –	profile modification and LDI signatures are observed 
	 –	 the LW level is sensitive to the IAW damping rate 
	 –	a possible mitigation strategy could use high-Z dopants 

•	 The LW spectrum extends right to the Landau cutoff

•	 Evidence of cooperative TPD between multiply overlapped beams 
is observed in the calculations

Summary
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Two-dimensional “Zakharov” simulations of OMEGA 
implosion experiments have been performed

TC8453

•	 The Zakharov equations1 were introduced as a model for strong 
plasma turbulence2

•	 “Averaging” over LW period, hydrodynamic equations (requires 
a strict separation of time scales)

•	 Both the equations for the Langmuir wave, and the sound waves  
are linear

•	 Kinetic effects beyond linear Landau damping are currently neglected

•	 Quasi-linear evolution of the distribution function (previous 
successes in ionosphere)

•	 Comparison with kinetic calculations (RPIC) (See H. X. Vu’s talk) 

1	V. E. Zakharov Zh. Exp. Theor. Phys. 62, 1745 (1972); V. E. Zakharov, in 
Handbook of Plasma Physics, Vol. 2 (Elsevier, Amsterdam, 1984), p. 81; 
V. D. Shapiro and V. I. Shevchenko, in Handbook of Plasma Physics, Vol. 2 
(Elsevier, Amsterdam, 1984), p. 124.

2	M. V. Goldman, Rev. Mod. Phys. 56, 709 (1984).



The “Zakharov” equations are extended when applied  
to the two-plasmon-decay problem

TC8454

•	 “Extended” Zakharov equations used in Zak*

Dispersion relations  
for LW and IAW

Wave envelopes
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*	D. F. DuBois et al., Phys. Rev. Lett. 74, 3983 (1995); 
D. A. Russell and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001).



Two-dimensional “Zakharov” simulations of OMEGA 
implosion experiments have been performed

TC8452

Threshold parameter predicts  
onset of TPD signatures in  

OMEGA experiments

1	A. Simon et al., Phys. Fluids 26, 3107 (1983).

(I14)Th = 3.6 (Te/2 keV) (150 nm/Ln)
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The linearly unstable eigenmode is located  
close to the quarter-critical density surface

TC8455
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The absolutely unstable mode collapses, exciting a broad 
spectrum of perturbations in the plasma density (dn)  

TC8456

•	 Single beam, oblique incidence with respect to the gradient

•	 Figures show snap shots of plasma wave intensity |E|2 in real space

•	 TPD plasma waves are generated; this is followed by collapse  
and “burn out”  
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The region of plasma-wave excitation rapidly spreads 
down the density gradient, modifying the density  
profile as it does so

TC8457

•	 The LW electric field and the nonlinear density perturbations  
are averaged over the transverse coordinate
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The spectrum of plasma waves evolves to reflect  
the excitation of plasma waves at lower density

TC8458

Single beam, normal incidence
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The region of excitation extends all the way out to  
the Landau cutoff—also an experimental observation 

TC8459
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Strong signatures of Langmuir decay (LDI) are observed 
in the preceding calculation for times, t > 5 ps

TC8460

•	 In LDI the plasma wave decays 
into a scattered LW and an  
ion-acoustic wave
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The level of Langmuir wave fluctuations (plasmons) 
can be reduced by decreasing the ion-wave damping rate

TC8461

•	 Reducing IAW damping rate leads to a lowering of the threshold  
value of E2 for the onset of LDI

•	 Suggests that high-Z dopants might be useful for controlling 
saturated levels of TPD
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Experiments on OMEGA are characterized  
by many overlapping beams

TC8355a

•	 OMEGA experiments  
have been conducted  
with six beams at 23°  
from the target normal



Computations made using overlapped beam irradiation 
confirm the existence of a strongly excited “shared” 
plasma wave  

TC8462

2-D simulation with single plane 
wave normal to density gradient

Two plane waves at ±23º with 
respect to the density gradient
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TC8451

Summary/Conclusions

A fluid-type Zakharov model is used to model TPD decay 
for parameters of OMEGA implosion experiments

 •	The waves saturate through the LF (ion) plasma response 
	 –	profile modification and LDI signatures are observed 
	 –	 the LW level is sensitive to the IAW damping rate 
	 –	a possible mitigation strategy could use high-Z dopants 

•	 The LW spectrum extends right to the Landau cutoff

•	 Evidence of cooperative TPD between multiply overlapped beams 
is observed in the calculations


