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A fluid-type Zakharov model is used to model TPD decay 
for parameters of OMEGA implosion experiments

TC8451

 •	The	waves	saturate	through	the	LF	(ion) plasma response 
 – profile modification and LDI signatures are observed 
 – the LW level is sensitive to the IAW damping rate 
 – a possible mitigation strategy could use high-Z dopants 

•	 The	LW	spectrum	extends	right	to	the	Landau	cutoff

•	 Evidence	of	cooperative	TPD	between	multiply	overlapped	beams	
is observed in the calculations

Summary
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Two-dimensional “Zakharov” simulations of OMEGA 
implosion experiments have been performed

TC8453

•	 The	Zakharov	equations1 were introduced as a model for strong 
plasma turbulence2

•	 “Averaging”	over	LW	period,	hydrodynamic	equations	(requires	
a strict separation of time scales)

•	 Both	the	equations	for	the	Langmuir	wave,	and	the	sound	waves	 
are linear

•	 Kinetic	effects	beyond	linear	Landau	damping	are	currently	neglected

•	 Quasi-linear	evolution	of	the	distribution	function	(previous 
successes in ionosphere)

•	 Comparison	with	kinetic	calculations	(RPIC) (See H. X. Vu’s talk) 

1 V. E. Zakharov Zh. Exp. Theor. Phys. 62, 1745 (1972); V. E. Zakharov, in 
Handbook of Plasma Physics, Vol. 2 (Elsevier, Amsterdam, 1984), p. 81; 
V. D. Shapiro and V. I. Shevchenko, in Handbook of Plasma Physics, Vol. 2 
(Elsevier, Amsterdam, 1984), p. 124.

2 M. V. Goldman, Rev. Mod. Phys. 56, 709 (1984).



The	“Zakharov”	equations	are	extended	when	applied	 
to the two-plasmon-decay problem

TC8454

•	 “Extended”	Zakharov	equations	used	in	Zak*

Dispersion relations  
for LW and IAW

Wave envelopes
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*	D. F. DuBois et al., Phys. Rev. Lett. 74, 3983 (1995); 
D. A. Russell and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001).



Two-dimensional “Zakharov” simulations of OMEGA 
implosion experiments have been performed

TC8452

Threshold parameter predicts  
onset of TPD signatures in  

OMEGA experiments

1 A. Simon et al., Phys. Fluids 26, 3107 (1983).

(I14)Th = 3.6 (Te/2 keV) (150 nm/Ln)
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The linearly unstable eigenmode is located  
close	to	the	quarter-critical	density	surface

TC8455
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The absolutely unstable mode collapses, exciting a broad 
spectrum of perturbations in the plasma density (dn)  

TC8456

•	 Single	beam,	oblique	incidence	with	respect	to	the	gradient

•	 Figures	show	snap	shots	of	plasma	wave	intensity	|E|2 in real space

•	 TPD	plasma	waves	are	generated;	this	is	followed	by	collapse	 
and “burn out”  
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The region of plasma-wave excitation rapidly spreads 
down the density gradient, modifying the density  
profile as it does so

TC8457

•	 The	LW	electric	field	and	the	nonlinear	density	perturbations	 
are averaged over the transverse coordinate
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The spectrum of plasma waves evolves to reflect  
the excitation of plasma waves at lower density

TC8458

Single beam, normal incidence
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The region of excitation extends all the way out to  
the Landau cutoff—also an experimental observation 

TC8459
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Strong signatures of Langmuir decay (LDI) are observed 
in the preceding calculation for times, t > 5 ps

TC8460

•	 In	LDI	the	plasma	wave	decays	
into a scattered LW and an  
ion-acoustic wave
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The level of Langmuir wave fluctuations (plasmons) 
can be reduced by decreasing the ion-wave damping rate

TC8461

•	 Reducing	IAW	damping	rate	leads	to	a	lowering	of	the	threshold	 
value of E2 for the onset of LDI

•	 Suggests	that	high-Z dopants might be useful for controlling 
saturated levels of TPD
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Experiments on OMEGA are characterized  
by many overlapping beams

TC8355a

•	 OMEGA	experiments	 
have been conducted  
with six beams at 23°  
from the target normal



Computations made using overlapped beam irradiation 
confirm the existence of a strongly excited “shared” 
plasma wave  

TC8462

2-D simulation with single plane 
wave normal to density gradient

Two plane waves at ±23º with 
respect to the density gradient

–2 0 2

–1

–1

–2

0

1

1

2

|EK|2 (arbitrary units)

0.65

0.45

0.25

0.05

k||
k0

k9
k0

k9
k0

k0

kp1

kp2

–3
–3 –2 –1

k||
k0

0 21 3

–23°

–23° +23°

+23°
–2

–1

0

2

1

3

0.50

0.35

0.20

0.05

kmDe = 0.25kmDe = 0.25
|EK|2 (arbitrary units)



TC8451

Summary/Conclusions

A fluid-type Zakharov model is used to model TPD decay 
for parameters of OMEGA implosion experiments

 •	The	waves	saturate	through	the	LF	(ion) plasma response 
 – profile modification and LDI signatures are observed 
 – the LW level is sensitive to the IAW damping rate 
 – a possible mitigation strategy could use high-Z dopants 

•	 The	LW	spectrum	extends	right	to	the	Landau	cutoff

•	 Evidence	of	cooperative	TPD	between	multiply	overlapped	beams	
is observed in the calculations


