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Scattered-light spectrum simulations indicate
that anomalous absorption affects the latter part
of implosions

E17991

•	 Time-dependent	scattered-laser-light	spectra	in	the	SBS	range 
(351±1 nm) are modeled by a combination of hydrodynamic 
and ray-tracing codes

•	 Most	features	observed	in	the	scattered-light	spectra	are	well	
reproduced by the modeling

•	 The	largest	discrepancy	in	the	modeling	suggests	that	absorption	
is over-estimated in the later part of the pulse, but scaling the 
total absorption to match observations still does not accurately 
reproduce the spectra

•	 Cross-beam	transfer	of	energy	out	of	the	beam-profile	center	might	
be the physical process behind the discrepancy

Summary
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Modeled FABS Spectrum

Time-dependent scattered-laser-light spectra in the SBS 
range (351±1 nm)	are	modeled	for	OMEGA	implosions
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•	 A	combination	of	codes	 
is used

– LILAC1: 1-D hydrodynamic 
code predicts time- 
dependent implosion 
profiles

– SAGERAYS2: Ray traces 
laser light through the 
corona and calculates 
spectral shift3

– MATLAB code calculates 
total spectrum collected 
from	all	60	OMEGA	beams

1J. A. Delettrez et al., Phys. Rev. A 36, 3926 (1987).
2R.	S.	Craxton	and	R.	L.	McCrory,	J.	Appl.	Phys.	56, 108 (1984).
3T.	Dewandre,	J.	R.	Albritton,	and	E.	A.	Williams,	Phys.	Fluids	24, 528 (1981).

20-nm plastic shell
1-ns square pulse

Modeled	Spectra
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(only 12% of total absorption)

Modeled	spectra	show	all	the	basic	structures	of	the	
experimental spectra but differ in some details
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Modeling	with	the	pulse	power	scaled	to	reproduce	
the observed time-dependent absorption does not 
significantly	improve	the	spectral	shift	predictions
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Where the energy is absorbed 
seems important, not just 
how	much	is	absorbed.



Cross-beam	transfer	of	energy	from	the	beam	profile	
center	toward	the	profile	edge	might	be	consistent	 
with	the	observations
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•	 Removes	energy	from	rays	closest 
to	center	of	beam	profile	that	
penetrate	furthest	towards	the	
critical surface and are responsible 
for	the	uppermost	finger	of	the	
spectrum tail

•	 Redistributes	that	energy	to	rays	
farther	out	in	the	beam	profile	
where	absorption	is	less

•	 Should	result	is	a	spectrum	that	
better matches observations

 – removes energy from 
	 the	uppermost	finger	

– decreases total absorption/
increases total scattered 
energy
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EM-seeded	SBS	cross-beam	power	transfer	might	cause	
some laser energy to “bypass” the high-absorption zone
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•	 Ion-acoustic	wave	(IAW) transfers 
energy	from	a		“pump”	EM	wave	
to	a	“seed”	EM	wave
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•	 Light	entering	the	plasma	can	
transfer energy to light that is 
leaving the plasma so that some 
laser energy “bypasses” the high- 
absorption region, reducing the 
total	absorbed	power

Cross-Beam	Power	Transfer

Because	the	EM	seed	amplitude	
is of the same order as the pump, 
very	small	gains	of	only	a	few	
percent	could	significantly	affect	
the absorbed energy.
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Beamlet crossings calculated from ray-trace and 
OMEGA	beam	geometry	indicate	that	energy	 
is typically lost by incoming beamlets
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S, path length (nm)
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 * C. J. Randall, J. R. Albritton, and 
  J. J. Thomson, Phys. Fluids 24, 1474 (1981).
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The strength of the transfer is estimated using the 
spatial gain length* LSBS	for	crossing	planar	waves

E17996 *J.	F.	Myatt	et al., Phys. Plasmas 11, 3394 (2004).

For one set of beamlets 
from one beam crossing, 

the reference beam is at 40°
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Calculating the energy lost/gained along each beamlet 
supports the transfer of energy out of beam center
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Cross-beam transfer scattered-light modeling improves 
the match to experimental data later in the implosion
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•	 Early	in	the	implosion	
modeling	now	shows	
too much scattered light

•	 Integrating	cross-
beam transfer into the 
hydrocode may improve 
the agreement
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Summary/Conclusions

Scattered-light spectrum simulations indicate
that anomalous absorption affects the latter part
of implosions

•	 Time-dependent	scattered-laser-light	spectra	in	the	SBS	range 
(351±1 nm) are modeled by a combination of hydrodynamic 
and ray-tracing codes

•	 Most	features	observed	in	the	scattered-light	spectra	are	well	
reproduced by the modeling

•	 The	largest	discrepancy	in	the	modeling	suggests	that	absorption	
is over-estimated in the later part of the pulse, but scaling the 
total absorption to match observations still does not accurately 
reproduce the spectra

•	 Cross-beam	transfer	of	energy	out	of	the	beam-profile	center	might	
be the physical process behind the discrepancy


