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Scattered-light spectrum simulations indicate
that anomalous absorption affects the latter part
of implosions

E17991

•	 Time-dependent scattered-laser-light spectra in the SBS range 
(351±1 nm) are modeled by a combination of hydrodynamic 
and ray-tracing codes

•	 Most features observed in the scattered-light spectra are well 
reproduced by the modeling

•	 The largest discrepancy in the modeling suggests that absorption 
is over-estimated in the later part of the pulse, but scaling the 
total absorption to match observations still does not accurately 
reproduce the spectra

•	 Cross-beam transfer of energy out of the beam-profile center might 
be the physical process behind the discrepancy

Summary
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Time-dependent scattered-laser-light spectra in the SBS 
range (351±1 nm) are modeled for OMEGA implosions
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•	 A combination of codes  
is used

–	 LILAC1: 1-D hydrodynamic 
code predicts time- 
dependent implosion 
profiles

–	 SAGERAYS2: Ray traces 
laser light through the 
corona and calculates 
spectral shift3

–	 MATLAB code calculates 
total spectrum collected 
from all 60 OMEGA beams

1J. A. Delettrez et al., Phys. Rev. A 36, 3926 (1987).
2R. S. Craxton and R. L. McCrory, J. Appl. Phys. 56, 108 (1984).
3T. Dewandre, J. R. Albritton, and E. A. Williams, Phys. Fluids 24, 528 (1981).

20-nm plastic shell
1-ns square pulse

Modeled Spectra
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(only 12% of total absorption)

Modeled spectra show all the basic structures of the 
experimental spectra but differ in some details
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Modeling with the pulse power scaled to reproduce 
the observed time-dependent absorption does not 
significantly improve the spectral shift predictions
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Where the energy is absorbed 
seems important, not just 
how much is absorbed.



Cross-beam transfer of energy from the beam profile 
center toward the profile edge might be consistent  
with the observations

E17993

•	 Removes energy from rays closest 
to center of beam profile that 
penetrate furthest towards the 
critical surface and are responsible 
for the uppermost finger of the 
spectrum tail

•	 Redistributes that energy to rays 
farther out in the beam profile 
where absorption is less

•	 Should result is a spectrum that 
better matches observations

	 –	 removes energy from 
	 the uppermost finger 

–	 decreases total absorption/
increases total scattered 
energy
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EM-seeded SBS cross-beam power transfer might cause 
some laser energy to “bypass” the high-absorption zone
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•	 Ion-acoustic wave (IAW) transfers 
energy from a  “pump” EM wave 
to a “seed” EM wave
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•	 Light entering the plasma can 
transfer energy to light that is 
leaving the plasma so that some 
laser energy “bypasses” the high- 
absorption region, reducing the 
total absorbed power

Cross-Beam Power Transfer

Because the EM seed amplitude 
is of the same order as the pump, 
very small gains of only a few 
percent could significantly affect 
the absorbed energy.
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Beamlet crossings calculated from ray-trace and 
OMEGA beam geometry indicate that energy  
is typically lost by incoming beamlets

E17999

S, path length (nm)
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	*	C. J. Randall, J. R. Albritton, and 
		J. J. Thomson, Phys. Fluids 24, 1474 (1981).
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The strength of the transfer is estimated using the 
spatial gain length* LSBS for crossing planar waves

E17996 *J. F. Myatt et al., Phys. Plasmas 11, 3394 (2004).

For one set of beamlets 
from one beam crossing, 

the reference beam is at 40°
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Calculating the energy lost/gained along each beamlet 
supports the transfer of energy out of beam center
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Cross-beam transfer scattered-light modeling improves 
the match to experimental data later in the implosion
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•	 Early in the implosion 
modeling now shows 
too much scattered light

•	 Integrating cross-
beam transfer into the 
hydrocode may improve 
the agreement
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Summary/Conclusions

Scattered-light spectrum simulations indicate
that anomalous absorption affects the latter part
of implosions

•	 Time-dependent scattered-laser-light spectra in the SBS range 
(351±1 nm) are modeled by a combination of hydrodynamic 
and ray-tracing codes

•	 Most features observed in the scattered-light spectra are well 
reproduced by the modeling

•	 The largest discrepancy in the modeling suggests that absorption 
is over-estimated in the later part of the pulse, but scaling the 
total absorption to match observations still does not accurately 
reproduce the spectra

•	 Cross-beam transfer of energy out of the beam-profile center might 
be the physical process behind the discrepancy


