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Integrated Simulations of Hot-Electron Transport  
and Ignition for Direct-Drive, Fast-Ignition Targets
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Electron-beam collimation by a self-generated resistive 
magnetic field increases the coupling efficiency of 
hot electrons with the target and reduces the energy 
required for ignition

TC7788a

•	 The hybrid-PIC code LSP1 and the fluid code DRACO2 have 
been integrated for simulations of hot-electron transport and 
ignition for direct-drive, fast-ignition fusion targets

•	 Integrated simulations show ignition of optimized spherically 
symmetric targets3 by a 43-kJ, 2-MeV Maxwellian electron beam.

•	 Simulations of plastic cone-in-shell targets designed for 
OMEGA-integrated experiments show heating by up to 1 keV 
and a neutron yield of 1.6 × 1010.

Summary
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Modeling the entire fast-ignition experiment requires 
resolving very different spatial and temporal scales  
and using different types of codes
FSC
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•	 A target implosion is simulated 
using hydrocodes.

•	 Generation of hot electrons by  
a petawatt laser pulse interacting 
with a solid target or coronal 
plasma is simulated using 
particle-in-cell (PIC) codes.

•	 Hot-electron transport to the target 
core is simulated using hybrid-PIC 
or Monte Carlo codes.

Implosion

Ignition

Fast
electrons

Laser
We have integrated the 
hydrocode DRACO and 
hybrid-PIC code LSP to model 
the fast-ignition experiment.
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LSP simulates the hot-electron transport and energy 
deposition, and DRACO is used to simulate the 
target hydrodynamics and burn

TC7790a

•	 DRACO
–	 2-D cylindrically symmetric hydrodynamic code
–	 includes all the necessary physics required to simulate 

ignition and burn of the imploded capsules

•	 LSP
–	 2-D/3-D implicit-hybrid PIC code
–	 implicit solution for the electromagnetic fields and implicit 

particle push
–	 hybrid fluid-kinetic description for plasma electrons  

with dynamic reallocation
–	 intra- and interspecies collisions based on Spitzer rates 

(have been corrected to include relativistic effects)
–	 uses ideal gas equation of state



LSP generates a hot-electron source term in the 
temperature equation solved by DRACO 

TC7791b

•	 LSP generates the time history of hot-electron-energy deposition  
in plasma for DRACO. 

•	 Hydrodynamic profiles in LSP: electron and ion temperatures, densities, 
and velocities are periodically updated according to DRACO results 
(fluid species). Electromagnetic fields and hot-electron distributions 
(kinetic species) are not changed.

•	 In LSP, hot electrons are promoted from background electrons with a 
mean energy predicted by PIC simulations*.
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*B. Chrisman, Y. Sentoku, and A. J. Kemp, Phys. Plasmas 15, 056309 (2008). 



In the integrated simulation, an imploded optimized  
fast-ignition target* is heated by a 2-MeV,  
FWHM = 30-nm electron beam

TC7792b
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*R. Betti and C. Zhou, Phys. Plasmas 12, 110702 (2005).
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Snapshots at t = 8 ps after the beginning of the e-beam
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Integrated simulation shows electron beam collimation 
by the self-generated resistive magnetic field  
and resistive filamentation1,2

TC7793c
1L. Gremillet et al., Phys. Plasmas 9, 941 (2002).
2J. J. Honrubia and J. Meyer-ter-Vehn, Nucl. Fusion 46, L25 (2006).

Total e-beam energy = 43 kJ, angular divergence = 20°
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Beam collimation and resistive filamentation  
in LSP simulations are in agreement with  
theoretical predictions1,2,3
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0x n h~= ` j; Ctheory á 1.7 # 1012 s–1at t = 1.5 ps

1L. Gremillet et al., Phys. Plasmas 9, 914 (2002).
2A. R. Bell and R. J. Kingham, Phys. Rev. Lett. 91, 035003 (2003).
3J. R. Davies, Phys. Rev. E 68, 056404 (2003).

FSC
•	 LSP reproduces correctly the analytic magnetic field 

for a rigid Gaussian electron beam3

•	 The resistive filamentation instability growth rate in 
the simulations is in agreement with Ref. 1
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Simulation with the magnetic field artificially suppressed 
predicts a minimum energy for ignition of 96 kJ for the 
same e-beam properties

TC8046a

Beam collimation by the resistive magnetic field 
reduces the energy required for ignition.
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Integrated OMEGA experiments using low-adiabat 
implosions of plastic cone-in-shell targets* and PW 
heating pulses from OMEGA EP will be performed soon

TC8134
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*C. Stoeckl et al., Phys. Plasmas 14, 112702 (2007).
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We have performed simulations of target heating  
for integrated OMEGA experiments

TC8135

•	 Hydrodynamic simulations of cone-in-shell target implosions 
predict areal densities sufficient to stop MeV electrons*

FSC

	 e-beam:	Gaussian, spot size = 20 nm (FWHM), duration = 10 ps 
angular spread = 20° to 60° (half angle) 
Maxwellian energy spectrum with GEhH = 1.2 to 2 MeV

	Laser pulse:	 I0 = 5.4 × 1019 W/cm2, E, = 2.6 kJ 
		  conversion efficiency to hot electrons = 0.3

–50
0

20

Plastic shell:
tR ~ 0.45 g/cm2 40

60
300

200

100

0
0 50

Target density (g/cm3)

z (nm)

r 
(n

m
)

100 150

*K. S. Anderson et al., Bull. Am. Phys. Soc. 52, 283 (2007).
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Hot electrons are collimated by the resistive magnetic 
field in the integrated simulation

TC8136

Snapshots at t = 6 ps after the beginning of the e-beam
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Hot electrons are collimated for an angular  
spread as high as 60°

TC8136a

Snapshots at t = 6 ps after the beginning of the e-beam
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The hot electrons deposit 25% to 75%  
of their energy on target

TC8137
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Plasma temperature increase (keV)
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Hot electrons heat up the target  
by 1 keV (maximum)
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Neutron yield increases 
from 3 × 109 to 1.6 × 1010 
due to hot electrons
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Summary/Conclusions

Electron-beam collimation by a self-generated resistive 
magnetic field increases the coupling efficiency of 
hot electrons with the target and reduces the energy 
required for ignition

•	 The hybrid-PIC code LSP1 and the fluid code DRACO2 have 
been integrated for simulations of hot-electron transport and 
ignition for direct-drive, fast-ignition fusion targets

•	 Integrated simulations show ignition of optimized spherically 
symmetric targets3 by a 43-kJ, 2-MeV Maxwellian electron beam.

•	 Simulations of plastic cone-in-shell targets designed for 
OMEGA-integrated experiments show heating by up to 1 keV 
and a neutron yield of 1.6 × 1010.


