Two-Plasmon Decay of Multiple Obliquely Incident Laser Beams in Direct-Drive Geometry

R. W. Short University of Rochester Laboratory for Laser Energetics 38th Annual Anomalous Absorption Conference Williamsburg, VA 1–6 June 2008

Summary

Calculation of convective gain and absolute thresholds for TPD is greatly simplified in Fourier space

- TPD occurs over a narrow range of densities near quarter-critical that are well approximated by a linear profile.
- In a linear profile Fourier analysis reduces the eighth-order TPD equation in configuration space to second order in k-space.
- Previous analysis of the absolute TPD instability* by this method suggests that the absolute instability is at or below threshold for OMEGA experimental parameters.
- The Fourier method can be extended to analyze the convective instability for multiple overlapping beams—the relevant situation for OMEGA.

Preliminary results: on OMEGA, TPD is generally convective, and driven collectively by nearest-neighbor beams.

UR 🔌

Both convective and absolute forms of the two-plasmon decay (TPD) instability are expected to play a role in laser-fusion experiments

- Convective instability: Plasma waves arising from noise enter the interaction region, are amplified, and propagate out at an enhanced level. Spatial growth; essentially a steady-state process. Spatial growth → ∞ represents threshold of absolute instability
- Absolute instability: Waves in the interaction region are amplified faster than they can propagate out; temporal growth continues until limited by nonlinear effects.
- Absolute instability predominates at small plasmon-wave vectors; small group velocity, large phase velocity.
- Convective instability predominates at large wave vectors; large group velocity, smaller phase velocity (traps electrons more effectively).

TPD is observed to depend on the overlapped intensity for multiple-beam experiments

C. Stoeckl et al., Phys. Rev. Lett. <u>90</u>, 235002 (2003).

UR LLE

The equations describing TPD are difficult to treat in configuration space

• Using the velocity potential defined by $v \equiv \nabla \psi$, the equations governing TPD can be written

$$\frac{\partial \psi}{\partial t} = \frac{\mathbf{e}\phi}{m} - \frac{3\upsilon_{\mathbf{e}}^2 n_1}{n_0} - \mathbf{v}_0 \cdot \nabla \psi; \quad \frac{\partial n_1}{\partial t} + \nabla \cdot (n_0 \nabla \psi) + \mathbf{v}_0 \cdot \nabla n_1 = \mathbf{0}; \quad \nabla^2 \phi = 4\pi \mathbf{e} n_1.$$

- These lead to an eighth-order ODE. Simplifications are of questionable validity near the plasma-wave turning points.
- Simple generic three-wave convective instability theory gives the spatial-gain formula $G = \exp\left(\frac{2\pi\gamma_0^2}{|\kappa'\upsilon_1\upsilon_2|}\right)$.
 - exponential function of intensity
 - must break down at absolute threshold ($G \rightarrow \infty$ for finite intensity.)

For a linear density profile, a more sophisticated treatment is feasible using Fourier transforms

- TPD is confined to a narrow range of densities below quarter-critical, so a linear density profile should be a good approximation.
- For a linear density profile, Fourier transforming in space leads to two coupled first-order ODE's in k-space:

 $\frac{dW_{+}}{d\kappa} = h(\kappa)W_{-}, \ \frac{dW_{-}}{d\kappa} = -h^{*}(\kappa)W_{+}$ coupling coefficient $h(\kappa) = \frac{\alpha\left(\frac{k_{y}}{k_{0}}\right)\kappa e^{i\alpha\sqrt{\beta}\kappa(\kappa-2\Omega)}}{\sqrt{\left[\kappa^{2} + \frac{1}{4} + \left(\frac{k_{y}}{k_{0}}\right)^{2}\right]^{2} - \kappa^{2}}}.$

 Previous studies have employed this k-space formulation to treat the absolute instability.*

OMEGA beam angles make it difficult to drive multiple-beam absolute TPD

- The closest beams are separated by about 23°.
- The absolute instability is most readily driven in a region near the apex of the hyperbola in k-space.
- The gain in intensity from combined beams appears insufficient to drive absolute TPD at the necessary angles.

Both absolute and convective forms of TPD can be studied using the k-space approach

- Absolute modes are found by searching for temporally growing modes localized in k-space. This involves complicated contour integrations in complex k-space for complex frequencies.* It can be difficult to obtain accurate results near the threshold.
- The convective instability can be studied using real k and ω ; the absolute threshold can be identified with divergent spatial gain.
- $\begin{pmatrix} W_+\\ W_- \end{pmatrix}$ represents the plasma wave amplitudes at $\begin{pmatrix} k+k_0, \omega+\omega_0\\ k-k_0, \omega-\omega_0 \end{pmatrix}$.
- Incoming waves at large negative x are represented by $W_{\pm}(\kappa \to \pm \infty)$ and outgoing waves by $W_{\pm}(\kappa \to \mp \infty)$.

TPD amplification factors can be obtained by numerical integration of the k-space equations

Beams at larger angles of incidence contribute less to TPD

Integrated TPD growth 20 $\theta = 23^{\circ}$ In (G) 10 $T_{e} = 2.5 \text{ keV}$ 0 $L = 350 \ \mu m$ $\theta = 48^{\circ}$ 20 In (G) 10 0 3 5 4 2 6 0 1 *I*₁₄

LL

Beams at larger angles of incidence contribute less to TPD

Integrated TPD growth 20 $\theta = 23^{\circ}$ In (G) 10 $T_{e} = 4.5 \text{ keV}$ 0 $L = 180 \ \mu m$ 20 $\theta = 48^{\circ}$ In (G) 10 0 15 5 10 20 0 *I*₁₄

LL

Preliminary results: on OMEGA, TPD is generally convective, and driven collectively by nearest-neighbor beams

• TPD occurs over a narrow range of densities near quarter-critical that are well approximated by a linear profile.

UR 🔬

- In a linear profile Fourier analysis reduces the eighth-order TPD equation in configuration space to second order in k-space.
- Previous analysis of the absolute TPD instability (Simon et al. 1983) by this method suggests that the absolute instability is at or below threshold for OMEGA experimental parameters.
- The Fourier method can be extended to analyze the convective instability for multiple overlapping beams—the relevant situation for OMEGA.