Two-Plasmon-Decay Instability
in Direct-Drive Implosion Experiments
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Summary

Shared plasma waves appear to be responsible
for fast-electron generation caused by the TPD
instability in direct-drive-implosion experiments
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e The TPD instability is seen via 3w/2, w/2, and hard x-ray emission
in most direct-drive-implosion experiments.

 TPD plasmons are identified between 0.2 < k, /kg < 2.5
corresponding to kApe ~ 0.3.

* Absolute TPD instability k | /kg < 0.2 — appears to be absent.

* Hard x-ray emission is anisotropic

— consistent with shared plasma waves in the HEX beam configuration
on OMEGA

— consistent with overlapped intensity dependence of TPD preheat
measurements of the past
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The TPD instability occurs near n./4

and has a low threshold intensity
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Experimentally verified characteristics of TPD instability:
o It ~ 2 x 1014 W/cm2 for OMEGA direct-drive implosions
e Characteristic emission of @w/2 and 3w/2 and hard x rays

 Hard x-ray emission depends on overlapped intensity
(NOT single-beam intensity)

e Landau cutoff determines TPD decays with longest plasma k vectors

Recent data:

e TPD plasmons: 0.2 < k /kg < 2.5 corresponding to kApe ~ 0.3
Hard x-ray emission is anisotropic — anisotropic fast electrons*
Thot Of fast electron up to 120 keV
Fast electrons appear directed along density gradient

Temporal dependence of 3w/2, w/2, and hard x-ray emission
is roughly equal

E16814 *J. Myatt, this conference



OMEGA implosion experiments have yielded excellent
/2, 3w/2, and hard x-ray spectra
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3w/2 and w/2 spectra indicate the presence
of TPD plasma waves of small and large k |
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Close to the TPD threshold, the @w/2 spectrum has
a very strong, narrow red component suggestive
of direct plasmon-to-photon conversion
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The light at @w/2 can only be observed very close to
the direction of the density gradient and its frequency

range is restricted by k| 2 < ko /2 UR
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e Close to threshold the observed
@/2 light could be consistent
with absolute TPD.

* At higher intensities we observed
«/2 light beyond the absolute
instability region, consistent with / | |
23° HEXTPD interaction and
Thomson downscattering.
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The 3/2 harmonic emission depends on intensity,
density scale length, and electron temperature
(suggests IL /T, dependence)
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The 3/2 harmonic emission depends on intensity,
density scale length, and electron temperature

(suggests IL /T, dependence)
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The 3/2 harmonic emission depends on intensity,
density scale length, and electron temperature
(suggests IL /T, dependence)
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Thomson scattering off TPD plasma waves close to

the Landau cutoff demonstrates temperature sensitivity
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Thomson scattering by Beam 47 off TPD plasma waves produced by Beam 47.

Large-k TPD plasma waves
suppressed by Landau damping
due to heating by Beam 56

Wavelength (nm)

0.5 1.0
Time (ns)

E16820



In planar experiments TPD scales with overlapped

intensity and saturates above 1019 W/cm?2
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* Planar CH targets, 100-um thick, multiple-overlapping beams
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In planar experiments TPD scales with overlapped

intensity and saturates above 1019 W/cm?2
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* Planar CH targets, 100-um thick, multiple-overlapping beams
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Overlapped beams can share plasma waves
propagating towards the center of the target
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On OMEGA hexagonal
and pentagonal
arrangements of beams
are ideally suited for
multibeam TPD effects.



These plasma waves will have some angular
and frequency spread but they are likely to be quite

coherent and well-suited for fast-electron generation
UR

LLE
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These plasma waves will have some angular
and frequency spread but they are likely to be quite

coherent and well-suited for fast-electron generation
UR

LLE

vphase

f

— Directional energetic-electron
production would be expected
from this process.
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We have found striking evidence for anisotropic
distribution of energetic electrons due to TPD instability*
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Polar plot of measured hard x-ray emission
(hvy > 40 keV)
I

Planar target with
preformed plasma and
six interaction beams
around HEX port.
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Six laser beams
incident at 23°

*J. Myatt, this conference.



Summary/Conclusions

Shared plasma waves appear to be responsible
for fast-electron generation caused by the TPD
instability in direct-drive-implosion experiments
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e The TPD instability is seen via 3w/2, w/2, and hard x-ray emission
in most direct-drive-implosion experiments.

 TPD plasmons are identified between 0.2 < k, /kg < 2.5
corresponding to kApe ~ 0.3.

* Absolute TPD instability k | /kg < 0.2 — appears to be absent.

* Hard x-ray emission is anisotropic

— consistent with shared plasma waves in the HEX beam configuration
on OMEGA

— consistent with overlapped intensity dependence of TPD preheat
measurements of the past
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