ICF Simulations of the Effect of Energetic Electrons Produced from Two-Plasmon Decay Instability

J. A. Delettrez University of Rochester Laboratory for Laser Energetics 38th Annual Anomalous Absorption Conference Williamsburg, VA 1–6 June 2008 Summary

Two fast-electron transport models have been developed to model preheat caused by the two-plasmon-decay instability

- Relativistic fast-electron transport is modeled in *LILAC* with multigroup diffusion model and straight-line model.
- The models were calibrated using warm CH implosions.
- Qualitative agreement is obtained with the diffusion model for the HXR emission and the ρR for a subset of thin CD cryogenic implosions (pre-December 2007).
- Doping the CD ablator with Si and Ge decreases the fast-electron production because of higher temperatures in the corona.

- V. N. Goncharov
 - P. B. Radha
 - **D. Shvarts**
 - C. Stoeckl
 - B. Yaakobi
 - A.V. Maximov
 - W. Seka
 - J. A. Frenje
 - J. F. Myatt
 - T. C. Sangster
 - V. A. Smalyuk

University of Rochester Laboratory for Laser Energetic

Fast-electron transport modeling depends on the source distribution

- Fast-electron source distribution is under study¹
 - the absolute TPD instability should send the electrons radially into the target, but it is believed that it is not the main mechanism for electron acceleration
 - the convective TPD instability may create electrons in a cone about the radial direction
 - experiments to resolve this question are in progress; recent results suggest that electrons are produced almost radially¹
- Two models are used in the *LILAC* simulations
 - multigroup diffusion that assumes the electrons are created semi-isotropically
 - straight-line transport using the stopping power derived by Li and Petrasso²

¹J. F. Myatt, this conference

UR 🔬

The fast electrons are created at the quarter-critical surface as a relativistic Maxwell–Boltzman–Jünter distribution function

• Electrons are created when the threshold parameter for the $2\omega_p$ instability¹, evaluated at the quarter-critical surface, exceeds unity:

$$\eta = I_{14}L_{\mu m}/233 T_{c} (keV) > 1$$

• The energy source scales as

$$\frac{E_{\text{fast}}}{E_{1/4 N_c}} = \phi \frac{\log(\eta)}{\log(3.0)}$$

The source temperature is obtained from a fit to the experimental measurement as

D₂:
$$T_s = 180 \left[\frac{T_c (\text{keV})}{2.2} \right]^{0.4} \left[\frac{I_{14}}{8} \right]^{0.63} \text{keV}$$

CH:
$$T_{s} = 10 I_{14} \text{ keV}$$

¹A. Simon *et al.*, Phys. Fluid <u>26</u>, 3107 (1983).

The multigroup fast-electron diffusion model assumes an isotropic electron distribution

- For each energy group in the flux-limited regime, the electrons are transported with a modified P_2 model.
- The source is half isotropic in the negative radial direction.
- Only energy loss to the thermal electrons caused by Coulomb collisions is considered (no self-interaction).
- Energy loss to fast ions is computed with a simple model that conserves momentum and energy as the electrons reflect from the outer boundary; ion acceleration includes the fast-electron pressure.

The straight-line radial transport follows electrons inward after their creation at the quarter-critical surface

- Electrons are created in the same groups as in the multigroup diffusion model and are spread toward the target center in a cone.
- They travel in a straight line, are tracked in time, and are reflected at the outer target boundary.
- Their energy loss caused by collisions and plasma waves includes the effect of blooming as modeled by Li and Petrasso.¹

The two measurable quantities are the ρR and the hard x-ray (HXR) emission

- The ρR obtained from *LILAC* is averaged over the entire neutron production and will be corrected for sampling effects in the future.¹
- The HXR emission spectrum is computed from the cross section in Jackson² and the NIST cross sections.³
- A temperature is obtained from an exponential fit to the spectrum.
- A qualitative comparison with measured emission for cryogenic implosions is difficult because post-pulse emission may be generated outside the target.

¹ P. B. Radha et al., Bull. Am. Phys. Soc. <u>51</u>, 106 (2006).

²J. D. Jackson, *Classical Electrodynamics* (Wiley, New York, 1962), p.513.

³H. O. Wyckoff, *ICRU Report*, <u>37</u>, International Commission on Radiation Units and Measurements, Inc. Bethesda, MD (1984).

The computed onset of the hard x-ray emission matches the measured onset, confirming the validity of the threshold

For cryogenic targets with a thin CD shell, the threshold parameter increases after burnthrough into D₂

UR 火

TC7777

The free parameter ϕ is normalized to the measured hard x-ray emission using 32 pC/mJ*

*B. Yaakobi et al., Phys. Plasmas <u>12</u>, 062703 (2005) and private communication.

For 5- μ m-thick CD cryo targets, the simulation of the HXR emission and ρR agree qualitatively with the measurements

Warm targets with a thick CHSi outer ablator produce a lower HRX emission than CH ablators

HXR emission for $\alpha\text{-}2$ pulse, 9 \times 10^{14} W/cm^2 Diffusion transport, $\phi = 0.3$ 100 CHSi (6%) Experiment Emitted energy (pC) - 10 80 CH $25 \,\mu \mathrm{m}$ μm Simulated 60 D_2 **40** 20 0 10 15 5 0 CHSi ablator thickness (μ m)

The energy deposited into the fast electrons decreases with increasing $\langle {\pmb Z} \rangle$ of material ablated

• The differences in the energy deposited between cryogenic and warm targets are due to a decrease in $I_{1/4}$ and an increase in T_e .

UR 🔌

- The difference due to CH dopants is mainly caused by an increase in *T*_e.
- The scale length is the same in all cases.

Two fast-electron transport models have been developed to model preheat caused by the two-plasmon-decay instability

- Relativistic fast-electron transport is modeled in *LILAC* with multigroup diffusion model and straight-line model.
- The models were calibrated using warm CH implosions.
- Qualitative agreement is obtained with the diffusion model for the HXR emission and the ρR for a subset of thin CD cryogenic implosions (pre-December 2007).
- Doping the CD ablator with Si and Ge decreases the fast-electron production because of higher temperatures in the corona.*