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Two fast-electron transport models have been  
developed to model preheat caused by  
the two-plasmon-decay instability

TC8121

•	 Relativistic fast-electron transport is modeled in LILAC with multigroup 
diffusion model and straight-line model.

•	 The models were calibrated using warm CH implosions.

•	 Qualitative agreement is obtained with the diffusion model for the HXR 
emission and the tR for a subset of thin CD cryogenic implosions  
(pre-December 2007).

•	 Doping the CD ablator with Si and Ge decreases the fast-electron 
production because of higher temperatures in the corona.

Summary
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Fast-electron transport modeling depends  
on the source distribution

TC8122

•	 Fast-electron source distribution is under study1

		  –	 the absolute TPD instability should send the electrons radially into 		
		  the target, but it is believed that it is not the main mechanism for 			
		  electron acceleration

		  –	 the convective TPD instability may create electrons in a cone about 
the radial direction

		  –	 experiments to resolve this question are in progress; recent results 
suggest that electrons are produced almost radially1

•	 Two models are used in the LILAC simulations
		  –	 multigroup diffusion that assumes the electrons are created  

semi-isotropically

		  –	 straight-line transport using the stopping power derived by  
Li and Petrasso2

1J. F. Myatt, this conference
2C. K. Li and R. D. Petrasso, Phys. Rev. E 70, 067401 (2004).



The fast electrons are created at the quarter-critical 
surface as a relativistic Maxwell–Boltzman–Jünter 
distribution function

TC8124

•	 Electrons are created when the threshold parameter for the 2~p 
instability1, evaluated at the quarter-critical surface, exceeds unity:

			   I L T233 1keV >c14 mh = n ] g

•	 The energy source scales as
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•	 The source temperature is obtained from a fit to the experimental 
measurement as
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1A. Simon et al., Phys. Fluid 26, 3107 (1983).



The multigroup fast-electron diffusion model 
assumes an isotropic electron distribution

TC8125

•	 For each energy group in the flux-limited regime, the electrons are 
transported with a modified P2 model.

•	 The source is half isotropic in the negative radial direction.

•	 Only energy loss to the thermal electrons caused by Coulomb collisions 
is considered (no self-interaction).

•	 Energy loss to fast ions is computed with a simple model that conserves 
momentum and energy as the electrons reflect from the outer boundary; 
ion acceleration includes the fast-electron pressure.



The straight-line radial transport follows electrons 
inward after their creation at the quarter-critical surface

TC8126

•	 Electrons are created in the same groups as in the multigroup 
diffusion model and are spread toward the target center in a cone.

•	 They travel in a straight line, are tracked in time, and are reflected 
at the outer target boundary.

•	 Their energy loss caused by collisions and plasma waves includes 
the effect of blooming as modeled by Li and Petrasso.1

1C. K. Li and R. D. Petrasso, Phys. Rev. E 70, 067401 (2004).



The two measurable quantities are the tR 
and the hard x-ray (HXR) emission

TC8127

•	 The tR obtained from LILAC is averaged over the entire neutron 
production and will be corrected for sampling effects in the future.1

•	 The HXR emission spectrum is computed from the cross section  
in Jackson2 and the NIST cross sections.3

•	 A temperature is obtained from an exponential fit to the spectrum.

•	 A qualitative comparison with measured emission for cryogenic 
implosions is difficult because post-pulse emission may be  
generated outside the target.

1	P. B. Radha et al., Bull. Am. Phys. Soc. 51, 106 (2006).
2	J. D. Jackson, Classical Electrodynamics  (Wiley, New York, 1962), p.513.
3	H. O. Wyckoff, ICRU Report, 37, International Commission on Radiation 	
	 Units and Measurements, Inc. Bethesda, MD (1984).



The computed onset of the hard x-ray emission matches  
the measured onset, confirming the validity of the threshold

TC8130 / keV233I L Tm c14h = n ] g

The electron temperature rises only slightly during the pulse.
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For cryogenic targets with a thin CD shell, the threshold 
parameter increases after burnthrough into D2

TC7777

/233 keVI L Tm c14h = n ] g

The scale lengths do not change significantly during  
the high-intensity part of the pulse.
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The free parameter z is normalized to the measured 
hard x-ray emission using 32 pC/mJ* 

TC8131

*	B. Yaakobi et al., Phys. Plasmas 12, 062703 (2005)	
	 and private communication.
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Laser intensity (× 1014 W/cm2)
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For 5-nm-thick CD cryo targets, the simulation  
of the HXR emission and tR agree qualitatively  
with the measurements

TC8132

Diffusion model with z = 0.30

Simulation tR does not include
the effect of sampling.

Exp. HXR emission divided by 3
to account for after-pulse emission.



Warm targets with a thick CHSi outer ablator  
produce a lower HRX emission than CH ablators

TC7991

HXR emission for a-2 pulse, 9 × 1014 W/cm2

Diffusion transport, z = 0.3
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The energy deposited into the fast electrons  
decreases with increasing GZH of material ablated

TC7992

•	 The differences in the energy 
deposited between cryogenic  
and warm targets are due to 
a decrease in I1/4 and an 
increase in Te.

•	 The difference due to CH 
dopants is mainly caused  
by an increase in Te.

•	 The scale length is  
the same in all cases.

Energy into fast electrons from laser
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TC8121

Summary/Conclusions

Two fast-electron transport models have been  
developed to model preheat caused by  
the two-plasmon-decay instability

•	 Relativistic fast-electron transport is modeled in LILAC with multigroup 
diffusion model and straight-line model.

•	 The models were calibrated using warm CH implosions.

•	 Qualitative agreement is obtained with the diffusion model for the HXR 
emission and the tR for a subset of thin CD cryogenic implosions  
(pre-December 2007).

•	 Doping the CD ablator with Si and Ge decreases the fast-electron 
production because of higher temperatures in the corona.*

*	See A. V. Maximov’s presentation 
	 for an alternate explanation.


