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Two fast-electron transport models have been  
developed to model preheat caused by  
the two-plasmon-decay instability

TC8121

•	 Relativistic	fast-electron	transport	is	modeled	in	LILAC with multigroup 
diffusion model and straight-line model.

•	 The	models	were	calibrated	using	warm	CH	implosions.

•	 Qualitative	agreement	is	obtained	with	the	diffusion	model	for	the	HXR	
emission and the tR for a subset of thin CD cryogenic implosions  
(pre-December 2007).

•	 Doping	the	CD	ablator	with	Si	and	Ge	decreases	the	fast-electron	
production because of higher temperatures in the corona.

Summary
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Fast-electron transport modeling depends  
on the source distribution

TC8122

•	 Fast-electron	source	distribution	is	under	study1

  – the absolute TPD instability should send the electrons radially into   
  the target, but it is believed that it is not the main mechanism for    
  electron acceleration

  – the convective TPD instability may create electrons in a cone about 
the radial direction

  – experiments to resolve this question are in progress; recent results 
suggest that electrons are produced almost radially1

•	 Two	models	are	used	in	the	LILAC simulations
  – multigroup diffusion that assumes the electrons are created  

semi-isotropically

  – straight-line transport using the stopping power derived by  
Li and Petrasso2

1J. F. Myatt, this conference
2C. K. Li and R. D. Petrasso, Phys. Rev. E 70, 067401 (2004).



The fast electrons are created at the quarter-critical 
surface as a relativistic Maxwell–Boltzman–Jünter 
distribution function

TC8124

•	 Electrons	are	created	when	the	threshold	parameter	for	the	2~p 
instability1, evaluated at the quarter-critical surface, exceeds unity:

   I L T233 1keV >c14 mh = n ] g

•	 The	energy	source	scales	as
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•	 The	source	temperature	is	obtained	from	a	fit	to	the	experimental	
measurement as

  

  

:
.

:

D

CH

I

I

T
T

T

2 2 8180
keV

keV

10 keV

. .

s
c

s

2

0 4
14

0 63

14

=

=

] g
< <F F

1A. Simon et al., Phys. Fluid 26, 3107 (1983).



The multigroup fast-electron diffusion model 
assumes an isotropic electron distribution

TC8125

•	 For	each	energy	group	in	the	flux-limited	regime,	the	electrons	are	
transported	with	a	modified	P2 model.

•	 The	source	is	half	isotropic	in	the	negative	radial	direction.

•	 Only	energy	loss	to	the	thermal	electrons	caused	by	Coulomb	collisions	
is considered (no self-interaction).

•	 Energy	loss	to	fast	ions	is	computed	with	a	simple	model	that	conserves	
momentum	and	energy	as	the	electrons	reflect	from	the	outer	boundary;	
ion acceleration includes the fast-electron pressure.



The straight-line radial transport follows electrons 
inward after their creation at the quarter-critical surface

TC8126

•	 Electrons	are	created	in	the	same	groups	as	in	the	multigroup	
diffusion model and are spread toward the target center in a cone.

•	 They	travel	in	a	straight	line,	are	tracked	in	time,	and	are	reflected	
at the outer target boundary.

•	 Their	energy	loss	caused	by	collisions	and	plasma	waves	includes	
the effect of blooming as modeled by Li and Petrasso.1

1C. K. Li and R. D. Petrasso, Phys. Rev. E 70, 067401 (2004).



The two measurable quantities are the tR 
and the hard x-ray (HXR) emission

TC8127

•	 The	tR obtained from LILAC is averaged over the entire neutron 
production and will be corrected for sampling effects in the future.1

•	 The	HXR	emission	spectrum	is	computed	from	the	cross	section	 
in Jackson2 and the NIST cross sections.3

•	 A	temperature	is	obtained	from	an	exponential	fit	to	the	spectrum.

•	 A	qualitative	comparison	with	measured	emission	for	cryogenic	
implosions is difficult because post-pulse emission may be  
generated outside the target.

1 P. B. Radha et al., Bull. Am. Phys. Soc. 51, 106 (2006).
2 J. D. Jackson, Classical Electrodynamics  (Wiley, New York, 1962), p.513.
3 H.	O.	Wyckoff,	ICRU Report, 37, International Commission on Radiation  
 Units and Measurements, Inc. Bethesda, MD (1984).



The computed onset of the hard x-ray emission matches  
the	measured	onset,	confirming	the	validity	of	the	threshold

TC8130 / keV233I L Tm c14h = n ] g

The electron temperature rises only slightly during the pulse.
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For cryogenic targets with a thin CD shell, the threshold 
parameter increases after burnthrough into D2

TC7777

/233 keVI L Tm c14h = n ] g

The	scale	lengths	do	not	change	significantly	during	 
the high-intensity part of the pulse.
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The free parameter z is normalized to the measured 
hard x-ray emission using 32 pC/mJ* 

TC8131

* B. Yaakobi et al., Phys. Plasmas 12, 062703 (2005) 
 and private communication.
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Laser intensity (× 1014 W/cm2)
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For 5-nm-thick CD cryo targets, the simulation  
of	the	HXR	emission	and	tR agree qualitatively  
with the measurements

TC8132

Diffusion model with z = 0.30

Simulation tR does not include
the effect of sampling.

Exp.	HXR	emission	divided	by	3
to account for after-pulse emission.



Warm	targets	with	a	thick	CHSi	outer	ablator	 
produce	a	lower	HRX	emission	than	CH	ablators

TC7991

HXR emission for a-2 pulse, 9 × 1014 W/cm2

Diffusion transport, z = 0.3
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The energy deposited into the fast electrons  
decreases with increasing GZH of material ablated

TC7992

•	 The	differences	in	the	energy	
deposited between cryogenic  
and warm targets are due to 
a decrease in I1/4 and an 
increase in Te.

•	 The	difference	due	to	CH	
dopants is mainly caused  
by an increase in Te.

•	 The	scale	length	is	 
the same in all cases.
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TC8121

Summary/Conclusions

Two fast-electron transport models have been  
developed to model preheat caused by  
the two-plasmon-decay instability

•	 Relativistic	fast-electron	transport	is	modeled	in	LILAC with multigroup 
diffusion model and straight-line model.

•	 The	models	were	calibrated	using	warm	CH	implosions.

•	 Qualitative	agreement	is	obtained	with	the	diffusion	model	for	the	HXR	
emission and the tR for a subset of thin CD cryogenic implosions  
(pre-December 2007).

•	 Doping	the	CD	ablator	with	Si	and	Ge	decreases	the	fast-electron	
production because of higher temperatures in the corona.*

* See A. V. Maximov’s presentation 
 for an alternate explanation.


