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•	 Planar plastic targets

–	 at low laser intensities, ~2 × 1014 W/cm2, 2-D simulations agree
	 with acceleration and compression experiments for a constant
	 flux limiter of 0.06

–	 for high intensities up to ~1015 W/cm2, time-dependendent flux 
limiters better explain acceleration experiments

–	 hot-electron preheat of the order of ~40 J explains compression 
experiments at high intensities

–	 Rayleigh–Taylor growth reduction correlates with higher hot-electron 
signals

•	 In spherical cryogenic implosions

–	 peak-burn compression degradation correlates with hot-electron 
signals

–	 thicker plastic ablators reduce hot-electron signals and produce
	 1-D compression

Hot-electron preheating is critical in compression
of planar plastic and spherical cryogenic targets

E15943

Summary
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Laser coupling was studied using the acceleration 
of planar, 20-nm-thick plastic targets

TC7746a
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At low intensities (~2 to 2.5 × 1014 W/cm2), we obtained  
good agreement between experiments and simulations 
with a constant flux limiter of f = 0.06

TC7747a
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At high intensities, ~1015 W/cm2, simulations with
time-dependent flux limiters agree better with 
experiments than with a constant flux limiter of f = 0.06

TC7751a
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In planar, plastic targets, hot electrons are 
produced in the last ~400 ps of a 1-ns drive

TC7759a

•	 Hot-electron temperature was 
measured to be in the range

	 of ~50 to 60 keV.

•	 Preheat was inferred using the 
prescription from B. Yaakobi et al., 
Phys. Plasmas 12, 062703 (2005).

•	 Endpoint of ~0.47 MeV corresponds to 
a hot-electron temperature of ~55 keV.



Shock compression was measured with side-on 
radiography using planar, 130-nm-thick plastic targets

TC7753a

•	 Shock compression was measured with a framing camera using
	 1-ns square and 3-ns shaped pulses.

•	 Experimental spatial resolution was 10 nm, temporal resolution 40 ps.
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DRACO simulations are in good agreement 
with experiments for shaped pulses

TC7755a

Measured preheat ~ 10 J
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For high-intensity square pulses, experiments 
show later-time decompression

TC7756a
Measured preheat ~ 40 J
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Reduction of RT growth at shorter wavelengths is 
consistent with increased preheat at higher drive intensities

E15961

•	 Betti–Goncharov growth rate

•	 Preheat increases va by ~4×, stabilizing the shorter 
wavelength more than the longer wavelength.
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Compression of spherical cryogenic D2 targets 
was studied by varying the drive intensity from
~2 × 1014 W/cm2 to 1.5 × 1015 W/cm2

E15820

•	 Peak-burn areal density was measured using a downshift 
of secondary 14.7-MeV protons and x-ray absorption.
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The hard-x-ray signal and temperature increase with 
drive intensity while peak-burn areal density decreases

E15821

•	 The hard-x-ray signals in cryo 
implosions are up to ~10×

	 higher than in equivelent
	 plastic implosions.

•	 The adiabats of the implosions were in the range from a - 1.3 to ~3.



Thicker, 10-nm plastic ablators dramatically reduce 
hard-x-ray signals in cryo implosions, producing
1-D tR’s in low-adiabat shots

E15962
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Hot-electron preheating is critical in compression
of planar plastic and spherical cryogenic targets

E15943

Summary/Conclusions

•	 Planar plastic targets

–	 at low laser intensities, ~2 × 1014 W/cm2, 2-D simulations agree
	 with acceleration and compression experiments for a constant
	 flux limiter of 0.06

–	 for high intensities up to ~1015 W/cm2, time-dependendent flux 
limiters better explain acceleration experiments

–	 hot-electron preheat of the order of ~40 J explains compression 
experiments at high intensities

–	 Rayleigh–Taylor growth reduction correlates with higher hot-electron 
signals

•	 In spherical cryogenic implosions

–	 peak-burn compression degradation correlates with hot-electron 
signals

–	 thicker plastic ablators reduce hot-electron signals and produce
	 1-D compression


