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High areal densities (140 to 200 mg/cm2) close to 1-D  
predictions were obtained when the TPD instability  
was mitigated in cryogenic implosions

TC7831

•	 Severe areal-density degradation in high-laser-intensity cryogenic  
implosions are likely due to fast electrons from the two-plasmon-decay 
(TPD) instability

•	 TPD fast-electron preheating can be mitigated with  

–	 low laser intensities for thin CD ablator shells OR

–	 a thicker CD ablator shell at mid-laser intensities

•	 High compression in low-adiabat cryogenic implosions is adequately  
modeled by 1-D models when fast-electron preheating is mitigated

•	 Current preheat estimations are within a factor of about 2 of the required 
preheating level, mainly due to physical uncertainties in the fast-electron 
production and transport models 

–	 further calibration and new methods are needed

Summary

Understanding compression of cryogenic D2 and DT 
targets is important for both DDI and IDI.
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A severe degradation of tR, up to 40% of 1-D 
predictions, was observed in high-intensity mid-  
and low-adiabat cryogenic implosions on OMEGA

TC7833
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Several possible causes of the areal-density degradation 
can be shown to be unlikely

TC7834

•	 Hydrostability of the imploded ice shell

–	 mid-a, high-I, and low-a mid-I implosions are predicted to be 
highly stable

•	 Shock mistiming due to absorption discrepancies, mainly in picket 

–	 degradation happens in all pulse shapes and pickets  
(type and strength) including no picket cases

•	 Radiation preheating

–	 D2 is almost transparent to thermal x rays "DT K few eV

•	 Nonlocal thermal electron preheating

–	 2 3 keV 6 10 m D 80 mkT d~ ~T 2cc "' #m n n%= _ ^i h  (at solid density)

•	 Fast electrons from resonance absorption

–	 2 5 keV 6 25 m D 80 mkT d~ ~T 2hh "' #m n n%= ^ ^h h



Preheating by ultrafast electrons from TPD observed 
in cryogenic and CH implosions is the main candidate 
for cryo tR degradation
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•	

•	 Thot > 50 keV	 "	 me > d(D2)

•	 Eph/EL* ~ (0.3 to 3.0) × 10–3	 "	 Eph ~ 5 to 50 J

*	B. Yaakobi et al., Phys. Plasmas 12 062703 (2005).
	 C. Stoeckl et al. Phys. Rev. Lett. 90 235002 (2003).



Preheat levels of an order of 50 to 100 J are needed  
to severely degrade areal density at low-adiabat  
cryo implosions

TC7836

•	 tR ? a–0.6 " for tRph/ tR1-D ~ 1/2 one needs:

	 aph/ a0 ~ 3.5
	 tph/ t0 ~ 0.5
	 Tph/ T0 ~ 2.0

•	 For a typical a0 = 3 shot on OMEGA:

T0 ~ 25 eV, t0 ~7 g/cm3, tR1-D ~ 200 mg/cm2

	 "	for tRph ~ 100 mg/cm2, one gets:

aph ~ 10, tph ~ 3.5 g/cm3

Tph ~ 50 eV " DTph ~ 25 eV

For DTph = 25 eV and 20 ng of D2 (cold and dense ice layer) 
one needs 70 J as preheating, which is 0.3% of laser energy.



This estimation compares well with 1-D simulations  
that include full fast-electron transport 

TC7837

Shot 43950: I = 1 × 1015 W/cm2, a = 3 shaped pulse 

HXRD2 = 800 pC, Th = 170 keV, tRexp = 92 mg/cm2
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Simulations with full fast-electron transport do agree 
with a simple theoretical prediction for tR degradation
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The degradation of measured tR is highly correlated 
with increased hard-x-ray signal and laser intensity

TC7839

Cryogenic low-a D2 targets with thin (≤5 nm) CD ablator 
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The highest tR(=140 to 160) and close to 1-D prediction  
was obtained using low laser intensity I K 3 × 1014 W/cm2  

(EL = 13 kJ), where the HXR signal was very low.



The higher TPD threshold intensity for plastic ablators 
allows the laser intensity and energy to be increased 
when using a thicker CD ablator
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A thicker CD ablator allows the use of higher intensities (5 × 1014 W/cm2)
and energy (18 kJ) resulting in record high tR = 200 mg/cm2.



High areal densities (140 to 200 mg/cm2) close to 1-D  
predictions were obtained in low-adiabat cryogenic 
implosions when the TDP instability was mitigated

TC7833a
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The preheat energy required to fit the measured tR  
is highly correlated with the measured HXR signal

TC7840

•	 The required “calibration” of HXRD (>50 keV): 

Hph (in dense D2)/HXRD (from whole target) 
~0.4 (J/pC) at low-I 
~0.1 (J/pC) at high-I

•	 Yaakobi’s “calibration” for pure D2  
(using Ka and HXR (>50 keV)  
measurements in a Mo/CH target with  
Thot = 65 keV):

Hph/HXRD (>50 keV)  
~ 0.75 J/pC × [65/Thot (keV)]

•	 BUT, that calibration does not account for
–	 HXR produced at the CD ablator
–	 fast-electron energy deposited  

at the ablated (CD and D2) parts of the target

•	 For that, one needs to assume/use a fast-electron transport model
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The correspondence between hard-x-ray (>50 keV) and 
preheat energy deposited in the dense shell is model-
dependent, but can be estimated in the limit of tme &tR

TC7832

The “calibration” of the HXR signal to preheat dense D2 shell depends on the 
prediction of the assumed transport model for the partition of fast-electron- 
energy deposition and hard-x-ray production in the dense D2, ablated D2, and 
ablated CD regions

In the limit of tme & tDR:

tme (100 keV) ~ 20 mg/cm2

tDR (t ~ TL) ~ 5 mg/cm2

Edep (dense D2):Edep(ablated D2): 
Edep (ablated CD) ~	 0.5:0.25:0.25 
	 (mass ratio)

HXR(D2)/HXR(CD) ~	 0.5:0.5 
	    (Z × mass ratio)

Hph (dense D2)/HXR (total > 50 keV) 
~ 1/3 × 0.75 (J/pC) × [65/Thot(keV)]

*	An error bar of an order of 2 should 
be assigned to calibration due to 
experimental and model errors
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High areal densities (140 to 200 mg/cm2) close to 1-D  
predictions were obtained when the TPD instability  
was mitigated in cryogenic implosions

TC7831

Summary/Conclusions

•	 Severe areal-density degradation in high-laser-intensity cryogenic  
implosions are likely due to fast electrons from the two-plasmon-decay 
(TPD) instability

•	 TPD fast-electron preheating can be mitigated with  

–	 low laser intensities for thin CD ablator shells OR

–	 a thicker CD ablator shell at mid-laser intensities

•	 High compression in low-adiabat cryogenic implosions is adequately  
modeled by 1-D models when fast-electron preheating is mitigated

•	 Current preheat estimations are within a factor of about 2 of the required 
preheating level, mainly due to physical uncertainties in the fast-electron 
production and transport models 

–	 further calibration and new methods are needed

Understanding compression of cryogenic D2 and DT 
targets is important for both DDI and IDI.


