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Fluid approximations can differ significantly from
kinetic results for relativistic beam filamentation

TC7782

•	 Fluid models represent an algebraic approximation to the kinetic 
plasma-dispersion function.

•	 This approximation breaks down near threshold (low frequencies)  
or for calculations of spatial growth or absolute instability.

•	 Kinetic calculations show that in general the instability has 
somewhat larger growth rates and extends over a wider range of 
transverse wave numbers than indicated by fluid approximations.

•	 Inclusion of mobile ions also tends to extend the range
	 of the instability.

Summary



Most fast-ignition scenarios require propagation
of a relativistic electron beam through a plasma

TC7002a

•	 Large-scale beam instabilities (kinking, pinching) develop slowly
	 on the FI timescale.

•	 Microinstabilities grow faster and include beam–plasma (electrostatic)
	 and filamentation (electromagnetic or mixed) instabilities.

•	 These instabilities require impedance.

		  –	reactive (electron inertia, Weibel and beam–plasma instability):
			   dominant at low densities (few × critical).

		  –	resistive (collisional, resistive filamentation): dominant at
			   high densities (compressed core).

		  –	a FI beam will transit both regions (reactive first).

•	 A fully relativistic treatment of the collisionless case can be  
	 carried out analytically; the collisional case is more difficult.



•	 Assume that, in equilibrium, the charge densities, currents,  
and fields vanish and that all perturbed quantities have the space  
and time dependence ei k x t: -~] g.

•	 Maxwell’s equations relate the current to the perturbed electric field.
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•	 The rest of the problem consists of using the plasma properties to derive 
the perturbed current as a response to E (the conductivity tensor).

Instabilities can be treated as a perturbed equilibrium 
provided the growth times are shorter than  
the beam slowing time
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The collisionless relativistic electron beam can be 
represented as a Maxwell–Boltzmann–Jüttner (MBJ) 
distribution

TC7005a

•	 The MBJ distribution is a relativistic generalization of the Maxwellian
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•	 When the thermal spread is small compared to the beam velocity,
	 this can be approximated as a drifting Maxwellian
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•	 These forms are also used to represent the return current
	 in the collisionless case.



In the collisionless case, the perturbed currents are
calculated from the relativistic Vlasov equation

TC7006

•	 The linearized relativistic Vlasov equation can be written as
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•	 Solving for the perturbed current gives
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•	 In the drifting Maxwellian approximation, the integrals can be
	 expressed in terms of the usual plasma Z function.

•	 The exact relativistic integrals can be expressed in terms of integrals

	 of the form ,ds
cks z
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The resulting dispersion relations are complicated
algebraically but readily evaluated numerically

TC7007a

•	 The dispersion relation is obtained from 
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•	 A typical R component in the drifting Maxwellian approximation with the
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Generalizing the dispersion relation to complex k allows 
the study of spatial growth and absolute instability

TC7331a

•	 Roots of the dispersion relation with real k and complex ~ indicate 
instability (pure temporal growth), usually convective.

•	 Start with a temporally growing mode and decrease Im(~); if one of 
the complex kz roots crosses the real axis and acquires Im(kz) < 0 
for Im(~) = 0, it represents spatial growth. 

•	 Perturbations introduced where the beam originates grow as it 
propagates into the plasma; spatial growth is most appropriate

	 to the FI problem.

•	 If two kz roots merge across the real axis to a double root with 
Im(kz) < 0 as Im(~) decreases to 0, absolute instability is indicated. 
Absolute modes grow at a fixed point independently of the original 
perturbation amplitudes and so eventually dominate. 



Fluid models represent an algebraic approximation to 
the kinetic plasma-dispersion function Z(g)

TC7783

•	 For small arguments

•	 For large arguments

	 where  

•  										              ,

	 so the asymptotic approximation fails in several instances
	 of interest for the filamentation instability.
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Fluid model underpredicts instability
at large transverse wave numbers
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Absolute mode appears only in kinetic model
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Mobile ions increase the range of instability

TC7786
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At smaller beam/plasma-density ratios
only the kinetic model gives instability

TC7787
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Fluid approximations can differ significantly from
kinetic results for relativistic beam filamentation

TC7782

•	 Fluid models represent an algebraic approximation to the kinetic 
plasma-dispersion function.

•	 This approximation breaks down near threshold (low frequencies)  
or for calculations of spatial growth or absolute instability.

•	 Kinetic calculations show that in general the instability has 
somewhat larger growth rates and extends over a wider range of 
transverse wave numbers than indicated by fluid approximations.

•	 Inclusion of mobile ions also tends to extend the range
	 of the instability.

Summary/Conclusions


