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Fluid approximations can differ significantly from
kinetic results for relativistic beam filamentation

TC7782

• Fluid models represent an algebraic approximation to the kinetic 
plasma-dispersion function.

• This approximation breaks down near threshold (low frequencies)  
or for calculations of spatial growth or absolute instability.

• Kinetic calculations show that in general the instability has 
somewhat larger growth rates and extends over a wider range of 
transverse wave numbers than indicated by fluid approximations.

• Inclusion of mobile ions also tends to extend the range
 of the instability.

Summary



Most fast-ignition scenarios require propagation
of a relativistic electron beam through a plasma

TC7002a

• Large-scale beam instabilities (kinking, pinching) develop slowly
 on the FI timescale.

• Microinstabilities grow faster and include beam–plasma (electrostatic)
 and filamentation (electromagnetic or mixed) instabilities.

• These instabilities require impedance.

  – reactive (electron inertia, Weibel and beam–plasma instability):
   dominant at low densities (few × critical).

  – resistive (collisional, resistive filamentation): dominant at
   high densities (compressed core).

  – a FI beam will transit both regions (reactive first).

• A fully relativistic treatment of the collisionless case can be  
 carried out analytically; the collisional case is more difficult.



• Assume that, in equilibrium, the charge densities, currents,  
and fields vanish and that all perturbed quantities have the space  
and time dependence ei k x t: -~] g.

• Maxwell’s equations relate the current to the perturbed electric field.
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• The rest of the problem consists of using the plasma properties to derive 
the perturbed current as a response to E (the conductivity tensor).

Instabilities can be treated as a perturbed equilibrium 
provided the growth times are shorter than  
the beam slowing time
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The collisionless relativistic electron beam can be 
represented as a Maxwell–Boltzmann–Jüttner (MBJ) 
distribution

TC7005a

• The MBJ distribution is a relativistic generalization of the Maxwellian
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• When the thermal spread is small compared to the beam velocity,
 this can be approximated as a drifting Maxwellian
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• These forms are also used to represent the return current
 in the collisionless case.



In the collisionless case, the perturbed currents are
calculated from the relativistic Vlasov equation

TC7006

• The linearized relativistic Vlasov equation can be written as
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• Solving for the perturbed current gives
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• In the drifting Maxwellian approximation, the integrals can be
 expressed in terms of the usual plasma Z function.

• The exact relativistic integrals can be expressed in terms of integrals

 of the form ,ds
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The resulting dispersion relations are complicated
algebraically but readily evaluated numerically

TC7007a

• The dispersion relation is obtained from 
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• A typical R component in the drifting Maxwellian approximation with the

 beam propagating in the z direction:  =+R k kzz y T z Tz
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Generalizing the dispersion relation to complex k allows 
the study of spatial growth and absolute instability

TC7331a

• Roots of the dispersion relation with real k and complex ~ indicate 
instability (pure temporal growth), usually convective.

• Start with a temporally growing mode and decrease Im(~); if one of 
the complex kz roots crosses the real axis and acquires Im(kz) < 0 
for Im(~) = 0, it represents spatial growth. 

• Perturbations introduced where the beam originates grow as it 
propagates into the plasma; spatial growth is most appropriate

 to the FI problem.

• If two kz roots merge across the real axis to a double root with 
Im(kz) < 0 as Im(~) decreases to 0, absolute instability is indicated. 
Absolute modes grow at a fixed point independently of the original 
perturbation amplitudes and so eventually dominate. 



Fluid models represent an algebraic approximation to 
the kinetic plasma-dispersion function Z(g)

TC7783

• For small arguments

• For large arguments

 where  

•                 ,

 so the asymptotic approximation fails in several instances
 of interest for the filamentation instability.
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Fluid model underpredicts instability
at large transverse wave numbers

TC7784
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Absolute mode appears only in kinetic model

TC7785
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Mobile ions increase the range of instability

TC7786
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At smaller beam/plasma-density ratios
only the kinetic model gives instability

TC7787

c
~b

k c
~b

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.8

0.7

0 10 20 30

Im(~) for kz=0
Im(kz) for ~=0
Pinch Im(~)
Pinch –Im(kz)

.

.

.

n
n

c

c

0 01

0 1

0 01

4

b

Tb

Tp

0

y

y

C =

=

=

=



Fluid approximations can differ significantly from
kinetic results for relativistic beam filamentation

TC7782

• Fluid models represent an algebraic approximation to the kinetic 
plasma-dispersion function.

• This approximation breaks down near threshold (low frequencies)  
or for calculations of spatial growth or absolute instability.

• Kinetic calculations show that in general the instability has 
somewhat larger growth rates and extends over a wider range of 
transverse wave numbers than indicated by fluid approximations.

• Inclusion of mobile ions also tends to extend the range
 of the instability.

Summary/Conclusions


