Laser—Plasma Interaction Processes Observed

in Direct-Drive Implosion Experiments
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Summary

Direct-drive-implosion experiments show evidence for
many different LPI processes that need to be accounted
for in target-performance simulations
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* The bulk of the absorption at 351-nm irradiation is due to inverse
bremsstrahlung absorption.

e During the first 200 ps of irradiation, resonance absorption
enhances absorption.

o At later times (=0.8 ns) enhanced scattering points toward
beam-to-beam energy transfer.

* Evidence of the two-plasmon-decay instability is seen in hard-x-ray
and 3w/2 self-emission spectra and absorption measurements.
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Resonance absorption is evident during
the first 200 ps of irradiation
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Single-beam planar-target experiments with s and p

polarization support resonance-absorption hypothesis
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* Light scattered outside lens cone
— Larger than specularly reflected light (by a few times)
— Independent of s or p polarization
— Interpreted as rippled critical surface
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The new resonance-absorption model tracks the
experimental data quite well for 200-ps irradiation
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The overall spectral shifts are closely related to the
coronal-plasma formation and the detailed spectral

evolution indicates nonlinear LPI processes
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The overall spectral shifts are closely related to the
coronal-plasma formation and the detailed spectral
evolution indicates nonlinear LPI processes

UR

p—
- P

-

351.5 —
Hi7 R

] “('I.ncide;[_'\tfsp'.‘e'cfti'u

-

LLE

logio () * Initial blue shift:
increasing plasma
column traversed

3 by scattered light —
reduced optical path

2 length — blue shift

e Scattered light
1 spectrum is almost
always red-peaked —
0 nonlinear process
must be involved

to incident

Power normalized Wavelength (nm)
w
a1
o
o

05 10 15
Time (ns)

E15980




The overall spectral shifts are closely related to the
coronal-plasma formation and the detailed spectral

evolution indicates nonlinear LPI processes
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The overall spectral shifts are closely related to the
coronal-plasma formation and the detailed spectral

evolution indicates nonlinear LPI processes
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e Scattered light
1 spectrum is almost
always red-peaked —
0 nonlinear process
must be involved

Late-time increased scattering
(reduced absorption) may be due
to beam-to-beam energy transfer
via EM-seeded SBS.
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Resonance absorption and overall and detailed spectral
features of the scattered light are observed for all pulse
shapes and targets but vary in detail
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e Overall spectral features mirror
plasma evolution — modeling
shows exquisite sensitivity to
thermal-heat transport

— D. Edgell’s talk

* Two-plasmon decay signatures
(3w/2 and hard-x-ray emission)
seen in all direct-drive-
implosion experiments

Cryo target:
10-um CD wall
97-um D5 ice
889-um OD




Resonance absorption and overall and detailed spectral
features of the scattered light are observed for all pulse
shapes and targets but vary in detail
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Fast-electron preheat due to TPD instability increases

extremely rapidly with overlapped intensity
UR

LLE

—h
7
w

2 3
LR

@

000
2%

Pulse shape: 1-ns square
Targets: CH

5 10 15 20
Overlapped intensity (1014 W/cm?2)

Fractional fast-electron preheat
(preheat energy/laser energy)

—h
9
()]

o

E15982



Hard x rays and 3@/2 signals scale equally strongly

with density scale length and electron temperature
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Intensity on target kept constant to within 3% rms for all shots.
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Hard x rays and 3@/2 signals scale equally strongly
with density scale length and electron temperature
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Cryogenic target implosions with thin CD shells show
striking features in scattered light and 3w/2 spectra
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Cryogenic target implosions with thin CD shells show
striking features in scattered light and 3w/2 spectra
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Cryogenic target implosions with thin CD shells show
striking features in scattered light and 3w/2 spectra
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Cryogenic target implosions with thin CD shells show

striking features in scattered light and 3w/2 spectra
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Cryogenic target implosions with thin CD shells show
striking features in scattered light and 3w/2 spectra
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* The general scattered-light
features change after the laser
burns through the CD shell.

After burnthrough
¢ the scattered light is reduced
¢ the spectrum changes shape

* 3w/2 emission increases
significantly in spite of
reduced intensity

Cryo target:
4.5-pum CD wall
95-um D, ice
864-um OD




The TPD instability (3«w/2 emission) is very sensitive
to both T, and density-gradient length
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The TPD instability (3«w/2 emission) is very sensitive
to both T, and density-gradient length
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The TPD instability (3«w/2 emission) is very sensitive
to both T, and density-gradient length
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High-intensity, cryogenic target implosions with thin DH
shells produce copious amounts of fast electrons due to
TPD instability and the effect is seen in absorption
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High-intensity, cryogenic target implosions with thin DH
shells produce copious amounts of fast electrons due to

TPD instability and the effect is seen in absorption
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At lower intensity, the ad hoc TPD “dump model”
still predicts total absorption very well
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Ad hoc LILAC model for TPD
results in agreement with

* PR degradation due to
preheat

* hard-x-ray signals
* threshold scaling ~ I Ln/Tg

* dump at n./4 into energetic
electrons (rapidly increasing,
saturating at 30%)




At lower intensity, the ad hoc TPD “dump model”
still predicts total absorption very well
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At lower intensity, the ad hoc TPD “dump model”
still predicts total absorption very well
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At lower intensity, the ad hoc TPD “dump model”
still predicts total absorption very well
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At lower intensity, the ad hoc TPD “dump model”
still predicts total absorption very well
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At lower intensity, the ad hoc TPD “dump model”
still predicts total absorption very well
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Ad hoc LILAC model for TPD
results in agreement with

* PR degradation due to
preheat

* hard-x-ray signals
* threshold scaling ~ I Ln/Tg

* dump at n./4 into energetic
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Summary/Conclusions

Direct-drive-implosion experiments show evidence for
many different LPI processes that need to be accounted
for in target-performance simulations
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* The bulk of the absorption at 351-nm irradiation is due to inverse
bremsstrahlung absorption.

e During the first 200 ps of irradiation, resonance absorption
enhances absorption.

o At later times (=0.8 ns) enhanced scattering points toward
beam-to-beam energy transfer.

* Evidence of the two-plasmon-decay instability is seen in hard-x-ray
and 3w/2 self-emission spectra and absorption measurements.
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Resonance absorption is evident
during the first 200 ps of irradiation
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Resonance absorption is evident
during the first 200 ps of irradiation
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LPI studies in direct-drive-implosion experiments

identify many processes
LLE

Interaction processes in direct-drive implosions

* First 200 ps
— enhanced absorption due to resonance absorption

o After plasma corona is well established (=0.8 ns)
— enhanced scattering
— red-peaked scattered-light spectrum

— This is consistent with beam-to-beam energy transfer via
EM-seeded SBS (more definitive experiments still required).

* TPD instability

— sensitivity to density gradient and T, leads to strongly enhanced 3w/2
and hard x-ray emission after burn-through of thin CD shells

— Energetic electron preheat continues to be a concern.

e Overall spectral features of scattered light have proven to be a sensitive
diagnostic for checking hydrodynamic simulations of plasma formation.
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