Simulations of the Effect of Energetic Electrons Produced from Two-Plasmon Decay in the 1-D Hydrodynamic Code LILAC

J. A. Delettrez University of Rochester Laboratory for Laser Energetics 37th Annual Anomalous Absorption Conference Maui, HI 27–31 August 2007

Summary

Preheat from the $2\omega_p$ instability could explain the observed ρR reduction in cryogenic implosions

• The existing fast-electron transport in the 1-D code *LILAC* was modified to model the source and transport of electrons produced by the $2\omega_p$ instability.

- Moderate agreement was obtained for the measured fuel $\rho {\it R}$ and the emitted HXR energy.
- The simulations reproduced the overall temporal evolution of the hard-x-ray (HXR) emission and, by inference, that of the $3/2\omega$ emission for cryogenic targets.
- Simulations indicate that about 50 J (~0.3% of the laser energy) in preheat is required to obtain the observed ~50% reduction in ρR from 1-D, in agreement with estimates.

D. Shvarts*, V. N. Goncharov, P. B. Radha, C. Stoeckl, V. A. Smalyuk, A. V. Maximov, and T. C. Sangster

> University of Rochester Laboratory for Laser Energetics

R. D. Petrasso and J. A. Frenje Massachusetts Institute of Technology

^{*}also: Nuclear Research Center, Negev, Israel

The fast electrons are transported with a multi-group diffusion model in the 1-D hydrocode *LILAC*

- Electrons are slowed down through Coulomb collisions with a term in the log Λ accounting for electron plasma waves.

UR

- The free-streaming electrons are treated with a modified P_2 model.
- The electrons lose energy to the ions at the outer boundary from momentum conservation.
- The ions are accelerated by the fast-electron pressure.
- The Bremsstrahlung radiation is computed using the Bethe–Heitler nonrelativistic formula.

The energy source is prescribed using semi-empirical scaling laws

 Electrons are created when the threshold parameter for the 2\omega p instability* exceeds unity:

$$\eta = I_{14}L_{\mu\rm m}/233\,T_{\rm c}\,(\rm keV)$$

- Two algorithms are used for the energy source
 - constant percentage of the energy reaching ¹/₄ critical
 - variable that scales as the log (η) at ½ critical with the maximum value given as the percentage
- The source temperature is obtained from a fit to the experimental measurement as

$$T_{\rm s} = 130 \left[\frac{T_{\rm c} \, (\rm keV)}{2.2} \right]^{0.4} \left[\frac{I_{14}}{8} \right]^{0.63}$$

$3/2\omega$ light and hard-x-ray emissions at energies above 60 keV indicate the presence of the two-plasmon-decay instability

The threshold parameter increases after burnthrough into the D_2 due to the decreasing T_e and increasing intensity at the $\frac{1}{4}$ critical surface

At high intensity $(1 \times 10^{15} \text{ W/cm}^2)$ the laser burns through to the D₂ early in the pulse resulting in a longer x-ray emission

The hard x-ray emission scales closer to experiment with variable energy input than with constant energy input

- $HRX_{tot} (mJ) = HXR (pC) \times 0.05 (mJ/pC)$
 - Obtained from a Mo calibration using $T_{hot} = 65 \text{ keV}$
 - Calibration at higher T_{hot} is needed

The neutron-averaged ρR , obtained with the variable energy input, agrees better with measurements at low intensity but not at high intensity

for α = 2 to 4 shots

Depositing 15% of the laser energy into fast electrons does not affect the shell dynamics, only its peak density UR 🔌 LLE

15 **Total absorbed** 10 Into I. B. No preheat 5 With preheat Into $2\omega_p$ 0 2 3 0 Time (s) Shell position during implosion; shot 43950 Mass density (g/cm³) Before Without $2\omega_p$ 6 shock return At end of pulse 4 With $2\omega_{\rm p}$ 2 0 50 100 150 0

Shot 43950 (10¹⁵ W/cm²), 30% variable Fraction of E laser Energy E laser 23.2 kJ 1.0 E into f.e. 3.38 kJ 0.15 0.14 E into fast ions 3.19 kJ 7.7 × 10^{−3} E_{dep} total 179 J E_{dep} in ice 6.2×10^{-3} 145 J \textit{E}_{dep} in high ho 2.0×10^{-3} 47 J

Summary/Conclusions

Preheat from the $2\omega_p$ instability could explain the observed ρR reduction in cryogenic implosions

- The existing fast-electron transport in the 1-D code *LILAC* was modified to model the source and transport of electrons produced by the $2\omega_p$ instability.
- Moderate agreement was obtained for the measured fuel $\rho {\it R}$ and the emitted HXR energy.
- The simulations reproduced the overall temporal evolution of the hard-x-ray (HXR) emission and, by inference, that of the $3/2\omega$ emission for cryogenic targets.
- Simulations indicate that about 50 J (~0.3% of the laser energy) in preheat is required to obtain the observed ~50% reduction in ρR from 1-D, in agreement with estimates.
- More work is required in predicting the source of $2\omega p$ electrons and in modeling their transport.

With the present input energy scaling, at least 30% of the laser energy reaching quarter critical needs to be deposited into the fast electrons

UR

For a cryogenic shot, the measured HXR emission comes earlier than the $3/2\omega$ emission and the computed HXR emission

UR

Depositing 15% of the laser energy into fast electrons does not affect the shell dynamics, only its peak density

Shot 43950 (10 ¹⁵ W/cm ²), 30% variable		
	Energy	Fraction of <i>E</i> laser
E laser	23.2 kJ	1.0
E into f.e.	3.38 kJ	0.15
E into fast ions	3.19 kJ	0.14
E _{dep} total	179 J	7.7 × 10 ^{−3}
E _{dep} in ice	145 J	6.2 × 10 ^{−3}
E _{dep} in high $ ho$	47 J	2.0 × 10 ^{−3}
HXR total	28 mJ	1.2 × 10 ^{−6}
HXR > 50 keV total	2.33 mJ	1.0 × 10 ⁻⁷
HXR > 50 keV in ice	0.73 mJ	3.1 × 10 ^{−8}