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Investigations of spatial growth and absolute forms of 
filamentation instabilities show significant differences 
from analyses based on temporal growth alone

TC7330

•	 Previous work on Weibel-like filamentation instabilities of electron 
beams has been based on developing dispersion relations with real 
wave vectors and complex frequencies to get temporal growth rates.

•	 Generalizing the dispersion relation to complex wave vectors allows 
investigation of spatial growth and absolute instability.

•	 Spatial growth rates are found to peak at much larger transverse 
wavelengths.

•	 Absolute instability is also found in a region of larger transverse 
wavelengths; growth rates are significantly smaller than the 
corresponding purely temporal growth rates.

Summary



Most fast-ignition scenarios require propagation
of a relativistic electron beam through a plasma

TC7002

•	 Large-scale beam instabilities (kinking, pinching) develop slowly
	 on the FI timescale.

•	 Microinstabilities grow faster and include beam–plasma (electrostatic)
	 and filamentation (electromagnetic or mixed) instabilities.

•	 These instabilities require impedance.

		  –	Reactive (electron inertia, Weibel and beam–plasma instability):
			   dominant at low densities (few × critical).

		  –	Resisitive (collisional, resistive filamentation): dominant at
			   high densities (compressed core).

		  –	A FI beam will transit both regions (reactive first).

•	 A fully relativistic treatment of the collisionless case has been  
	 carried out analytically; the collisional case is more difficult.



•	 Assume that, in equilibrium, the charge densities, currents, and fields 
vanish.

•	 All perturbed quantities have the space and time dependence e k xi t: -~] g

•	 Maxwell’s equations relate the current to the perturbed electric field.
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•	 The rest of the problem consists of using the plasma properties to 
derive the perturbed current as a response to E (the dielectric tensor).

Instabilities can be treated as a perturbed 
equilibrium provided the growth times are 
shorter than the beam slowing time
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The simplest model treats the
return current as purely resistive
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•	 The beam current Jb is assumed collisionless and, in equilibrium,
	 is balanced by a return current Jp = –Jb.

•	 In the resistive model (Gremillet et al.,*), the perturbed current
	 is related to the field by Jp = 1/h E, where h is the resistivity.

•	 When the frequencies (real or growth rate) become comparable to h, 
	 inertial effects can be included using the result from a fluid treatment
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•	 At low densities inertial effects dominate the perturbed return current,
	 and a collisionless kinetic treatment is appropriate.

*L. Gremillet, G. Bonnaud, and F. Amiranoff, Phys. Plasmas 9, 941 (2002).



The relativistic electron beam can be represented
as a Maxwell–Boltzmann–Jüttner distribution
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•	 The MBJ distribution is a relativistic generalization of the Maxwellian
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•	 When the thermal spread is small compared to the beam velocity,
	 this can be approximated as a drifting Maxwellian
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•	 These forms are also used to represent the return current
	 in the collisionless case.



In the collisionless case, the perturbed currents are
calculated from the relativistic Vlasov equation
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•	 The linearized relativistic Vlasov equation can be written as
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•	 Solving for the perturbed current gives
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•	 In the drifting Maxwellian approximation, the integrals can be
	 expressed in terms of the usual plasma Z-function.

•	 The exact relativistic integrals can be expressed in terms of integrals
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Generalizing the dispersion relation to complex k allows 
the study of spatial growth and absolute instability
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•	 Once initiated, absolute modes grow in time indefinitely at any 
given point, until limited by nonlinear processes.

•	 Convective modes require a continuing source of perturbation; 
otherwise they eventually die away at any given point.

•	 The concepts and standard methods of analysis used to distinguish 
absolute and convective instability were originally developed for 
the problem of electron beams propagating in plasmas.*

*	R. J. Briggs, Electron Stream Interaction with Plasmas	
	 (MIT Press, Cambridge, MA 1964). 



The absolute mode peaks at much smaller  
perpendicular wave numbers
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The spatial growth rates also peak  
at smaller wave numbers
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The absolute mode has relatively smaller growth rates  
at higher background densities
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The general dispersion relation can be used to address 
several further problems of interest in FI research
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•	 The growth rates and cutoffs can be used to benchmark simulations  
of beam propagation with codes such as LSP.

•	 These results can also be used to optimize such simulations—e.g., since 
spatial growth and absolute instability peak at smaller wave numbers, 
less resolution may be required to represent the most important modes 
in the FI problem.

•	 Arbitrary wave-vector directions allow comparison of two-stream and 
filamentation instabilities and identification of the most unstable mode, 
which may lie between these instabilities.*

•	 It should be possible to extend these results through WKB-type  
methods to include the effects of inhomogeneity.

*A. Bret and C. Deutsch, Phys. Plasmas 12, 082704 (2005).



Summary/Conclusions

Investigations of spatial growth and absolute forms of 
filamentation instabilities show significant differences 
from analyses based on temporal growth alone

TC7330

•	 Previous work on Weibel-like filamentation instabilities of electron 
beams has been based on developing dispersion relations with real 
wave vectors and complex frequencies to get temporal growth rates.

•	 Generalizing the dispersion relation to complex wave vectors allows 
investigation of spatial growth and absolute instability.

•	 Spatial growth rates are found to peak at much larger transverse 
wavelengths.

•	 Absolute instability is also found in a region of larger transverse 
wavelengths; growth rates are significantly smaller than the 
corresponding purely temporal growth rates.


