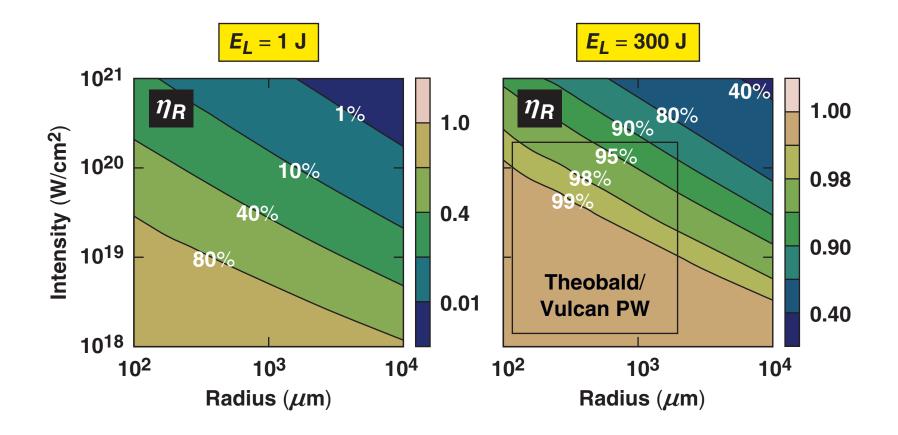

Laboratory Demonstration of e⁺e⁻ Pair-Plasma Production on OMEGA EP

J. Myatt University of Rochester Laboratory for Laser Energetics 36th Annual Anomalous Absorption Conference Jackson Hole, WY 4–9 June 2006

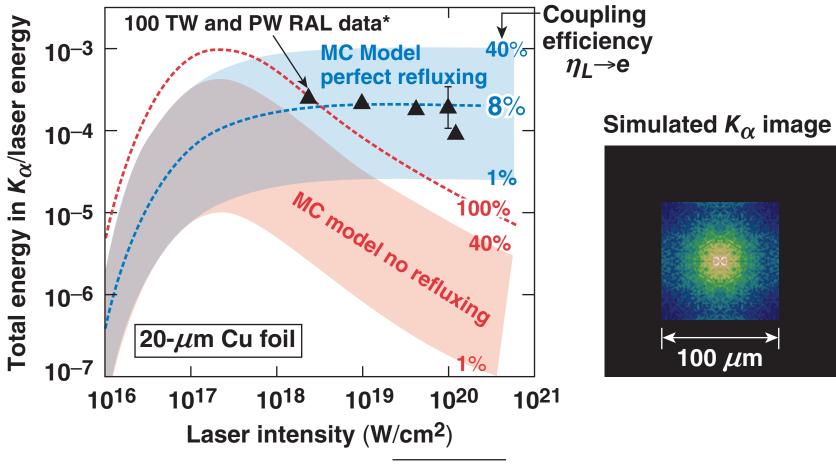

OMEGA EP can potentially produce an electron–positronpair plasma containing between 10¹¹ and 10¹² positrons

- We estimate between 10¹¹ and 10¹² positrons can be made on OMEGA EP, assuming a total laser energy of 5 kJ and a 40% conversion efficiency of laser energy into hot electrons.
- For the generation of pairs, total available energy is more important than obtaining higher laser intensities (assuming a laser intensity of at least ~10¹⁹ W/cm²).
- If the pairs can be confined to a volume of ~10⁻⁴ cm³ we will have produced the first ever pair *plasma* in the laboratory.
- Flexibility of having two beams could help confine the pairs.

Pair creation due to the Trident process can be estimated since the cross section is well known

- Of the two mechanisms that are important for OMEGA EP parameters, the Trident process is dominant for targets thinner than a few hundred microns.
 - "Trident" process: $e^- + Z \rightarrow e^- + Z + e^+ + e^-$
- Probability of positron production (per electron) is calculated to be between $W_+ \simeq (10^{-4} \text{ to } 10^{-3}).^*$
 - assuming MeV electron temperatures
 - all electrons stop in the target
 - refluxing of hot electrons from sheath assures this

For targets less than ~1 mm in size and for laser energies of a few hundred joules, essentially all of the hot electrons reflux



- This is in contrast to smaller laser energies ${\sim}1~J$

UR

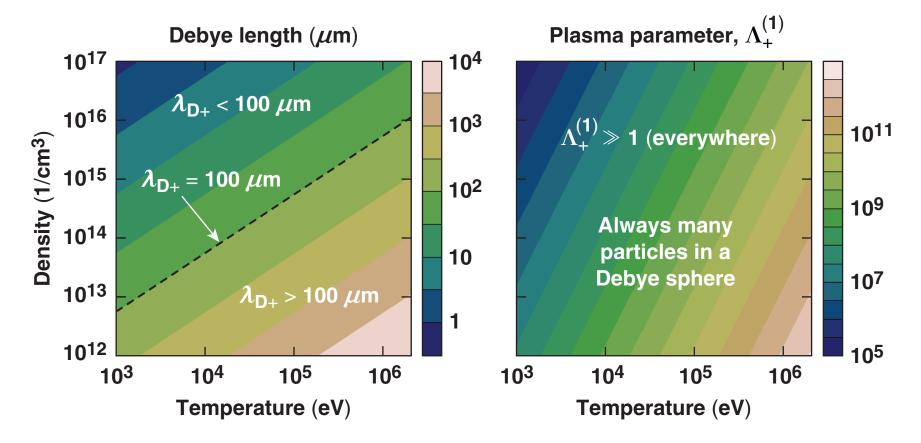
K_{α} emission from small mass targets provides strong evidence for near-perfect hot electron refluxing

• *K*-shell yield is the same as an infinitely thick target, but without the reabsorption (the same applies to bremsstrahlung).

^{*}W. Theobald et al., Phys. Plasmas <u>13</u>, 043102 (2006).

Pair creation via the Bethe–Heitler conversion of bremsstrahlung must also be considered

• For Au targets (Z = 79) greater than ~100 μ m thick, this process becomes competitive with Trident.


 $e^- + Z \rightarrow e^- + Z + \gamma, \quad \gamma + Z \rightarrow Z + e^- + e^+$

- The bremsstrahlung efficiency is well known ($E_e > 1.02$ MeV). (dE/dx)_{rad}/(dE/dx)_{coll} ~ 10%

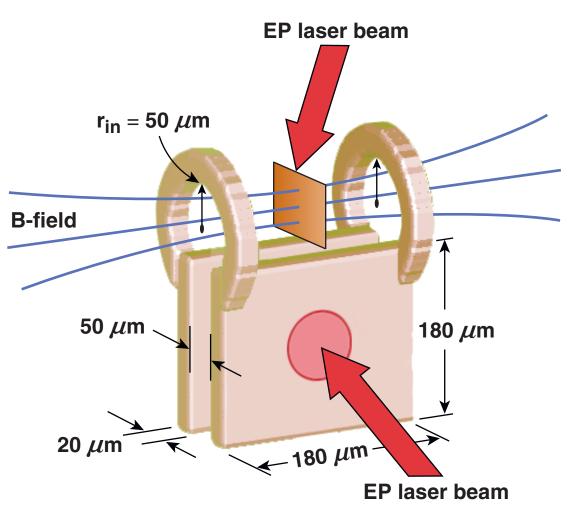
- Pair production is the dominant attenuation mechanism for gamma photons at these energies.
- Most of this radiation escapes the target unless it is thick.
- For 1 MeV, γ -rays in Au $\mu\rho$ = (0.1) (19.3) = 1.93 cm⁻¹.
- $-\Delta I/I_0 = 1 \exp[-x(mm)/7.2] \sim 1\%$ at x = 100 μ m

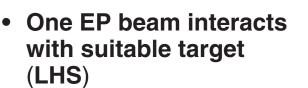
For the positrons to be considered a plasma, not only must $\Lambda_{+}^{(1)} \equiv n_{+}\lambda_{D+}^{3} \gg 1$, but also $\Lambda_{+}^{(2)} = \ell_{system}/\lambda_{D+} \gg 1$

- Positron temperature is computed to be high ~ 1 MeV
- For Debye length to be less than $\simeq 100 \ \mu$ m, require $n_+ > 10^{16} \ {\rm cm}^{-3}$

Positron expansion makes it difficult to obtain the required density of $\gtrsim\!10^{16}~\text{cm}^{-3}$

- Unlike hot electrons, positrons do not reflux
- Spherical expansion must be limited to a radius of 300 μ m

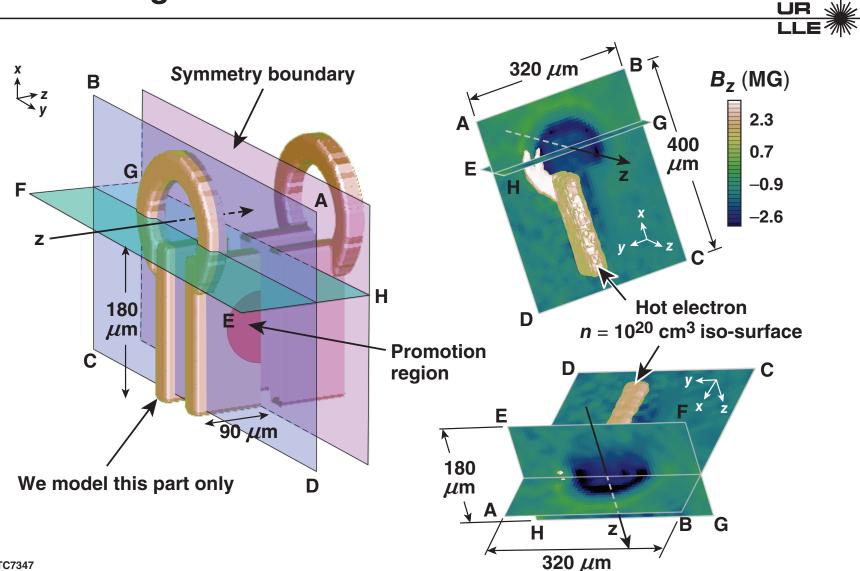

- free expansion at c for 1 ps
-
$$\Lambda_{+}^{(2)} = 2.4 \left(N_{+} / 10^{11} \right)^{1/2} \left(1 \text{ MeV} / T_{+} \right)^{1/2} \left(1 \text{ ps} / \tau_{p} \right)^{1/2}$$


Limit expansion to one dimension only

$$-\Lambda_{+}^{(2)} = 86 \left(N_{+} / 10^{11} \right)^{1/2} \left(1 \text{ MeV} / T_{+} \right)^{1/2} \left(\tau / 1 \text{ ps} \right)^{1/2} \left(100 \ \mu \text{m} / r_{\text{conf}} \right)^{1/2}$$

- Cooling or moderating positrons helps
 - not currently considered

The flexibility of multiple EP beams can be utilized to magnetize a foil target


UR 🔌

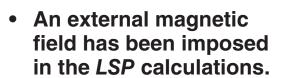
- Other beam creates positrons in second target which is immersed in the B-field created by the first beam
- Positrons expansion is influenced
- Targets similar to LHS have been fielded (*)

*H. Daido et al., Phys. Rev. Lett. <u>56</u>, 846 (1986);

N. C. Woolsey et al., Phys. Plasmas <u>8</u>, 2439 (2001).

The first part of the scheme has been investigated with LSP indicating that we can achieve MG magnetic field strengths



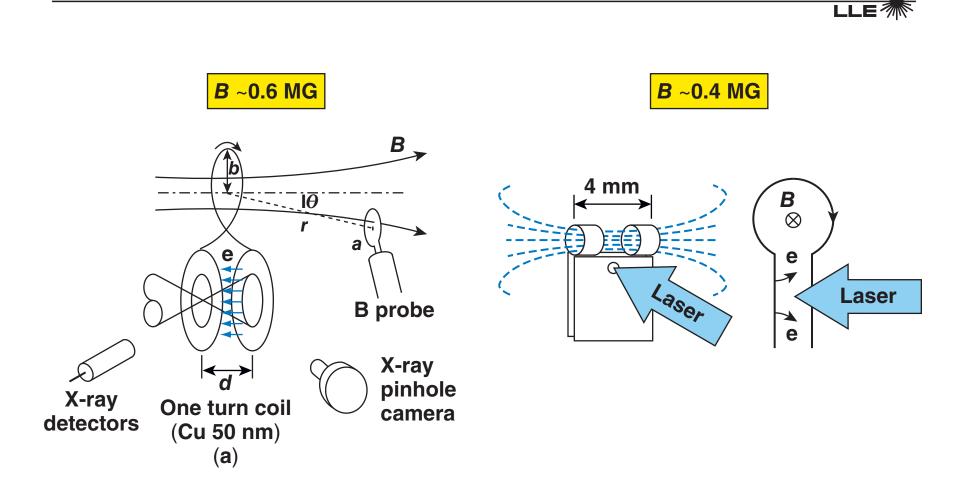

One megaguass magnetic fields are attainable and would be sufficient to confine radial positron expansion to within a few hundred microns

- Positron synchrotron frequency $\omega_{Ce} = eB/\gamma mc$ - $\omega_{Ce} = 1.76 \times 10^{13} (B/1 \text{ MG}) (1/\gamma) \text{ rads s}^{-1}$
- Gyroradius $r_{Ce} = \beta_{\perp} c / \omega_{Ce}$ - $r_{Ce} = 17 (1 \text{ MG} / B) (\gamma) \mu \text{m}$
- From 1-D expansion on previous slide: $\Lambda_{\!+}^{(2)}{\sim}40$
 - even better if v << c</p>
- Dynamics could be very interesting
 - electrons are refluxed but positrons are accelerated by the sheath
 - positrons and the neutralizing electron cloud would be expelled along the magnetic field

LSP calculations confirm that an external axial magnetic field of 4 MG is sufficient to achieve the required positron density

LLE⁴

- The positrons are emitted in a jet along the direction of the imposed field.
- Interesting dynamics are observed in the absence of an external magnetic field.
- This arises due to a self-generated azimuthal magnetic field.


Diagnosing the pair plasma provides some significant challenges

- The presence of positrons can be diagnosed by observing their annihilation radiation
 - once the positron slows down to an energy near that of an atomic electron, annihilation takes place, producing two back-to-back gamma photons of energy $\sim m_0 c^2 = 511$ keV each
- Pair plasmas are "symmetric," leading to a difference in the linear-mode structure compared to "asymmetric" e-i plasmas
- Cutoffs for x waves differ from e-i plasmas
- No Faraday rotation
- Unfortunately, collective waves have long wavelengths >100 μ m
- The probe beam would need to be in the submillimeter range

OMEGA EP can potentially produce an electron–positronpair plasma containing between 10¹¹ and 10¹² positrons

- We estimate between 10¹¹ and 10¹² positrons can be made on OMEGA EP, assuming a total laser energy of 5 kJ and a 40% conversion efficiency of laser energy into hot electrons.
- For the generation of pairs, total available energy is more important than obtaining higher laser intensities (assuming a laser intensity of at least ~10¹⁹ W/cm²).
- If the pairs can be confined to a volume of ~10⁻⁴ cm³ we will have produced the first ever pair *plasma* in the laboratory.
- Flexibility of having two beams could help confine the pairs.

One of the OMEGA EP beams can be used to create a confining magnetic field

H. Daido et al., Phys. Rev. Lett. <u>56</u>, 846 (1986).

N. C. Woolsey et al., Phys. Plasmas <u>8</u>, 2439 (2001).