An Update on Polar-Direct-Drive Experiments on OMEGA

~15.3 kJ, 1-ns square 10 D–D neutron yield (× 10¹⁰) 8 6 в⊗ ⊗ ⊗ ⊗ ∦ ∦ О́ ⊗ ⊕ E Ç **c*** 4 * 2 0 19.2 19.6 19.0 19.4 19.8 20.0 20.2 20.4 Shell thickness (μ m)

R. S. Craxton, F. J. Marshall, et al. University of Rochester Laboratory for Laser Energetics 36th Annual Anomalous Absorption Conference Jackson Hole, WY 4–9 June 2006

- F. J. Marshall
- M. J. Bonino
 - **R. Epstein**
- V. Yu. Glebov
- J. A. Marozas
- S. G. Noyes
- V. A. Smalyuk

Summary

The performance of Saturn polar-direct-drive (PDD) targets can be improved by optimizing the manufacturing and mounting

- Symmetric PDD implosions are routinely obtained on OMEGA
- Target-related factors can affect the performance
 - mounting scheme (webs versus spokes)
 - ring fabrication method
 - Al barrier thickness
- Spherical PDD implosions are backlit to study implosion physics
 - the effects of beam smoothing can be observed

- Review PDD experiments on OMEGA
- Yield results from near-symmetric implosions
 - examine which factors produce the best performance
- Backlighting results for smoothed and unsmoothed irradiation

40 of the OMEGA beams are used to emulate the NIF 48 beam indirect-drive configuration

As the critical surface moves in, the ring of the Saturn target refracts rays back toward the equator

Silk-mounted and spoke-mounted Saturn targets have been shot on OMEGA

Time-integrated pinhole camera (2 to 5 keV)

"Silk" mount

"Spoke" mount

Saturn targets can be tuned to give symmetric implosions

Experiments and simulations for Saturn pointing without a ring are in excellent agreement

OMEGA shot 38502 (TIM 5 view)

DRACO/Spect3D* (simulation)

Several sets of Saturn targets were shot with differing performance

Saturn targets were made with various combinations of parameters

Data set	Ring	Mount	AI coating
Α	Press molded	Web	1000 Å
В	Injection molded	Spoke	500 Å
С	Machined	Spoke	1000 Å
D	Machined	Spoke	1000 Å
E	Injection molded	Spoke	1000 Å

Spoke-mounted Saturn targets performed better than silk-mounted Saturn targets

~15.3 kJ, 1-ns square 10 D–D neutron yield (× 10¹⁰) 60 beams TCC 8 6 Saturn \otimes \otimes \otimes (spoke mounted) \otimes Saturn (silk mounted) 4 2 0 19.0 19.2 19.4 19.6 19.8 20.0 20.2 20.4 Shell thickness (μ m)

Saturn targets with injection-molded rings gave the highest yields

The AI barrier-layer thickness may be significant

Spoke-mounted Saturn-target neutron yields are reduced when spider silks are added

6 D–D neutron yield (× 10¹⁰) 5 Spoke \bigotimes 4 \otimes \bigotimes \otimes \bigotimes 3 Spoke and silk 2 1 December 2005 0 1000 1100 1200 1300 1400 1500 Saturn-ring major radius (μ m)

A first look at radiographs of PDD implosions with and without SSD shows a noticeable difference

OMEGA shot 42937

SSD on $Y_n = 4.4 \times 10^{10}$

SSD off $Y_n = 3.0 \times 10^{10}$

The PDD neutron yields for standard PDD are also higher with SSD on

The performance of Saturn polar-direct-drive (PDD) targets can be improved by optimizing the manufacturing and mounting

- Symmetric PDD implosions are routinely obtained on OMEGA
- Target-related factors can affect the performance
 - mounting scheme (webs versus spokes)
 - ring fabrication method
 - Al barrier thickness
- Spherical PDD implosions are backlit to study implosion physics
 - the effects of beam smoothing can be observed