Stimulated Brillouin Scattering in Long-Scale-Length Plasmas

W. Seka
University of Rochester
Laboratory for Laser Energetics

35th Annual Anomalous Absorption Conference
Fajardo, Puerto Rico
27 June–1 July 2005
Collaborators

H. Baldis
University of California, Davis
Lawrence Livermore National Laboratories

S. Depierreux
Commissariat à l’Energie Atomique, France

R. S. Craxton, S. P. Regan, C. Stoeckl, R. W. Short, B. Yaakobi, and R. E. Bahr
University of Rochester
Laboratory for Laser Energetics
SBS in the present long-scale-length experiments saturates ~1% and is now reasonably understood

- OMEGA long-scale-length experiments have flat velocity regions similar to the NIF.

- SBS is observed in these regions. Pf3d simulations and standard SBS gain calculations agree well with observations.

- SBS extrapolation to NIF direct-drive implosion experiments predicts no problems in the low-density region.

- The detailed NIF and OMEGA plasma profiles differ near n_c.
 - Velocity gradients near n_c are steeper in OMEGA experiments.
 - NIF SBS gains near n_c are higher due to gentler density and velocity gradients.
 - More detailed analysis is required.
Motivation

NIF direct-drive plasma conditions predicted by LILAC point toward a window of SBS vulnerability

\[\alpha = 3 \]
OMEGA long-scale-length conditions are tailored to reproduce NIF conditions.

SAGE predictions for OMEGA long-scale-length experiments are close to NIF conditions below $n_c/4$.

![NIF density profile at 6.2 ns](image-url)
OMEGA long-scale-length velocity profiles have flat sections like NIF profiles but over much shorter distances.

Comparison of LILAC NIF plasma conditions at 6.2 ns with OMEGA long-scale-length experiments as predicted by the 2-D code SAGE.
OMEGA long-scale-length velocity profiles have flat sections like NIF profiles but over much shorter distances.

Comparison of LILAC NIF plasma conditions at 6.2 ns with OMEGA long-scale-length experiments as predicted by the 2-D code SAGE.
OMEGA long-scale-length velocity profiles have flat sections like NIF profiles but over much shorter distances.

Comparison of *LILAC* NIF plasma conditions at 6.2 ns with OMEGA long-scale-length experiments as predicted by the 2-D code *SAGE*.

![NIF velocity profile at 6.2 ns](image-url)
OMEGA long-scale-length velocity profiles have flat sections like NIF profiles but over much shorter distances.

Comparison of \textit{LILAC} NIF plasma conditions at 6.2 ns with OMEGA long-scale-length experiments as predicted by the 2-D code SAGE.
NIF plasma conditions are produced on OMEGA with staggered multiple-beam irradiation of solid CH targets.

- **Nine plasma-producing beams (P)** at –2.5 ns, 1.5-mm diam
- **Eight heater beams (S)** at 0 ns, 1.5-mm diam
- **Interaction beam (I)** (BL25) at 0 ns

The image also includes a graph showing pulse shapes with normalized power on the y-axis and time (ns) on the x-axis. The graph indicates three labeled points: P, S, and I, corresponding to different beam types.
SBS at normal incidence with a slowly evolving velocity “bump” exhibits blue-shifted SBS over the entire pulse that is sensitive to beam smoothing.

\[I \approx 5 \times 10^{14} \text{ W/cm}^2 \]

SAGE run 3261

- **Density** \((n_e/n_c) \)
- **Distance** (mm)
- **Expansion velocity** \((10^7 \text{ cm/s}) \)

Wavelength (nm)

- 352.0
- 351.5
- 351.0
- 350.5

- 20836, \(8 \times 10^{14} \text{ W/cm}^2 \), 0.5-THz SSD, PS

- **Inc. laser**
- **SBS25**
- **Density**
- **Expansion velocity**
- **Distance** (mm)
- **Time** (ns)

4.2%
Multiple interaction beams at oblique incidence allow the identification of optical seeding of SBS

- Beam 30 only avoids EM seeding from any speculally reflected light.
- Beam 14 only provides specularly reflected light.
- Firing both beams permits the study of EM seeding of SBS.
NIF plasma conditions are reasonably well approximated by OMEGA experiments for $n_e < n_c/4$.

$LILAC$ prediction for NIF at 6.8 ns ($\alpha = 3$)

- Sonic point
- NIF region of SBS vulnerability

![Graph showing density and temperature profiles vs radius](image-url)
NIF plasma conditions are reasonably well approximated by OMEGA experiments for $n_e < n_c/4$
NIF plasma conditions are reasonably well approximated by OMEGA experiments for $n_e < n_c/4$.
NIF plasma conditions are reasonably well approximated by OMEGA experiments for $n_e < n_c/4$.
NIF plasma conditions are reasonably well approximated by OMEGA experiments for $n_e < n_c/4$.
NIF plasma conditions are reasonably well approximated by OMEGA experiments for $n_e < n_c/4$
The fast-evolving velocity bump leads to early quenching of the blue-shifted SBS feature while the EM-seeded red feature disappears without seed.
The fast-evolving velocity bump leads to early quenching of the blue-shifted SBS feature while the EM-seeded red feature disappears without seed.

$I = 1.5 \times 10^{15}$ W/cm²
SSD, 1 THz, PS

SAGE run 3268

Density (n_e/n_c)

Distance (mm)

Expansion velocity (10^7 cm/s)

Wavelength (nm)

FABS

SBS30

Distance (mm)

Time (ns)

I ≈ 1.5×10^{15} W/cm²
SSD, 1 THz, PS
The fast-evolving velocity bump leads to early quenching of the blue-shifted SBS feature while the EM-seeded red feature disappears without seed.

\[I \approx 1.5 \times 10^{15} \text{ W/cm}^2 \]

SSD, 1 THz, PS

SAGE run 3268

No opposing beam (no seeding by specularly reflected beam)
Standard SBS gain predictions* for OMEGA long-scale-length plasma experiments agree very well with observations.

SBS gain for peak (average) intensity = 8×10^{14} W/cm2
(saturated inside high-intensity speckles of 3 to 5× average intensity)

Standard SBS gain predictions* for OMEGA long-scale-length plasma experiments agree very well with observations.

\[SBS \text{ gain} = 8 \times 10^{14} \text{ W/cm}^2 \]

(saturated inside high-intensity speckles of 3 to 5 times average intensity)

Standard SBS gain predictions* for OMEGA long-scale-length plasma experiments agree very well with observations.

*SBS gain for peak (average) intensity $= 8 \times 10^{14}$ W/cm2

(saturated inside high-intensity speckles of 3 to 5 times average intensity)

Standard SBS gain predictions* for OMEGA long-scale-length plasma experiments agree very well with observations.

SBS gain for peak (average)
intensity = \(8 \times 10^{14}\) W/cm\(^2\)
(saturated inside high-intensity speckles of 3 to 5\(\times\) average intensity)

Standard SBS gain predictions* for OMEGA long-scale-length plasma experiments agree very well with observations.

Low SBS gain is easily observed in the presence of an opposing beam. (EM seed amplified by SBS gain)

SBS gain for peak (average) intensity = 8×10^{14} W/cm2 (saturated inside high-intensity speckles of 3 to 5× average intensity)

Standard SBS gain predictions* for OMEGA long-scale-length plasma experiments agree very well with observations.

\[20836, 8 \times 10^{14} \text{ W/cm}^2, \]
\[0.5\text{-THz SSD, PS} \]

\[\text{Log}_{10}(I) \]
\[\lambda \]

\[\text{Maximum gain } \sim 8 \]
\[\text{Inside speckle peaks maximum gain } >20 \rightarrow \text{saturation broadening expected} \]

\[\text{E13886} \]

LPI simulations confirm SBS growth from thermal noise in the underdense region

- Velocity bumps are responsible for significant SBS gains.

- Pf3d and standard SBS gain calculations* using SAGE predictions for the plasma correctly predict the measured SBS blue shifts and gains.
 - Standard SBS gains are consistent with observations when speckle intensities are included (growth from thermal noise).

- Gain of the red-shifted SBS component is much lower, but EM seeding makes it easily observed.

SBS gain predictions for the NIF quad are similar to OMEGA in low-density corona; high-density SBS may be higher on the NIF.

\[
S_{\text{SBS}}(\lambda, \omega, t) = I_n(\omega) \exp(G(t)I_{\text{inc}}) \alpha
\]

\[
\Rightarrow \text{more detailed analysis required}
\]

EM-seeded SBS
SBS in the present long-scale-length experiments saturates $\sim 1\%$ and is now reasonably understood.

- OMEGA long-scale-length experiments have flat velocity regions similar to the NIF.
- SBS is observed in these regions. Pf3d simulations and standard SBS gain calculations agree well with observations.
- SBS extrapolation to NIF direct-drive implosion experiments predicts no problems in the low-density region.
- The detailed NIF and OMEGA plasma profiles differ near n_c.
 - Velocity gradients near n_c are steeper in OMEGA experiments.
 - NIF SBS gains near n_c are higher due to gentler density and velocity gradients.
 - More detailed analysis is required.