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Summary

SBS in the present long-scale-length experiments

saturates ~1% and is how reasonably understood

UR
LLE

e OMEGA long-scale-length experiments have flat velocity regions
similar to the NIF.

e SBS is observed in these regions. Pf3d simulations and standard
SBS gain calculations agree well with observations.

e SBS extrapolation to NIF direct-drive implosion experiments
predicts no problems in the low-density region.
* The detailed NIF and OMEGA plasma profiles differ near n..
— Velocity gradients near n; are steeper in OMEGA experiments.

— NIF SBS gains near n. are higher due to gentler density
and velocity gradients.

— More detailed analysis is required.
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Motivation

NIF direct-drive plasma conditions predicted by LILAC
point toward a window of SBS vulnerability
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OMEGA long-scale-length conditions are tailored

to reproduce NIF conditions
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SAGE predictions for OMEGA long-scale-length
experiments are close to NIF conditions below n./4.

NIF density profile at 6.2 ns
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OMEGA long-scale-length velocity profiles have flat

sections like NIF profiles but over much shorter distances
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Comparison of LILAC NIF plasma conditions at 6.2 ns with OMEGA
long-scale-length experiments as predicted by the 2-D code SAGE.
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OMEGA long-scale-length velocity profiles have flat

sections like NIF profiles but over much shorter distances
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Comparison of LILAC NIF plasma conditions at 6.2 ns with OMEGA
long-scale-length experiments as predicted by the 2-D code SAGE.

NIF velocity profile at 6.2 ns
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OMEGA long-scale-length velocity profiles have flat

sections like NIF profiles but over much shorter distances
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Comparison of LILAC NIF plasma conditions at 6.2 ns with OMEGA
long-scale-length experiments as predicted by the 2-D code SAGE.

NIF velocity profile at 6.2 ns
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OMEGA long-scale-length velocity profiles have flat

sections like NIF profiles but over much shorter distances
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Comparison of LILAC NIF plasma conditions at 6.2 ns with OMEGA
long-scale-length experiments as predicted by the 2-D code SAGE.

NIF velocity profile at 6.2 ns
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NIF plasma conditions are produced on OMEGA
with staggered multiple-beam irradiation
of solid CH targets
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SBS at normal incidence with a slowly evolving velocity
“bump’ exhibits blue-shifted SBS over the entire pulse
that is sensitive to beam smoothing
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Multiple interaction beams at oblique incidence

allow the identification of optical seeding of SBS e
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9 Ps at -2 ns
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Beam 30 only avoids EM seeding
from any specularly reflected light.

Power

e Beam 14 only provides specularly
reflected light.

e Firing both beams permits the study
of EM seeding of SBS.
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NIF plasma conditions are reasonably well

approximated by OMEGA experiments for ng < no/4
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LILAC prediction for NIF at 6.8 ns (a. = 3)
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NIF plasma conditions are reasonably well

approximated by OMEGA experiments for ng < no/4
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LILAC prediction for NIF at 6.8 ns (a. = 3)
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NIF plasma conditions are reasonably well

approximated by OMEGA experiments for ng < no/4
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LILAC prediction for NIF at 6.8 ns (a. = 3)
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NIF plasma conditions are reasonably well

approximated by OMEGA experiments for ng < no/4
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LILAC prediction for NIF at 6.8 ns (a. = 3)
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NIF plasma conditions are reasonably well
approximated by OMEGA experiments for ng < no/4
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NIF plasma conditions are reasonably well
approximated by OMEGA experiments for ng < no/4
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The fast-evolving velocity bump leads to early
quenching of the blue-shifted SBS feature while the

EM-seeded red feature disappears without seed

UR
LLE

I~1.5 x 1015 W/cm?2

SSD, 1 THz, PS T
c
SAGE run 3268 £
Q) )
E o
I 2
e ©
> =
‘S
(o]
°
>
[
S
e £
® c
Q_ N
0.0 0.5 1.0 O =3
Distance (mm) S
I
>
=

0.0 1.0 2,0
E11943a Time (ns)



The fast-evolving velocity bump leads to early
quenching of the blue-shifted SBS feature while the

EM-seeded red feature disappears without seed
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The fast-evolving velocity bump leads to early
quenching of the blue-shifted SBS feature while the

EM-seeded red feature disappears without seed
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Standard SBS gain predictions* for OMEGA long-scale-
length plasma experiments agree very well

with observations
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Standard SBS gain predictions* for OMEGA long-scale-
length plasma experiments agree very well

with observations
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Standard SBS gain predictions* for OMEGA long-scale-
length plasma experiments agree very well

with observations
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Standard SBS gain predictions* for OMEGA long-scale-
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Standard SBS gain predictions* for OMEGA long-scale-
length plasma experiments agree very well

with observations
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Standard SBS gain predictions* for OMEGA long-scale-
length plasma experiments agree very well

with observations
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LPI simulations confirm SBS growth

from thermal noise in the underdense region
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» Velocity bumps are responsible for significant SBS gains.

e Pf3d and standard SBS gain calculations* using SAGE predictions for
the plasma correctly predict the measured SBS blue shifts and gains.

— Standard SBS gains are consistent with observations when
speckle intensities are included (growth from thermal noise).

e Gain of the red-shifted SBS component is much lower, but EM seeding
makes it easily observed.
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SBS gain predictions for the NIF quad are similar
to OMEGA in low-density corona; high-density SBS
may be higher on the NIF
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Summary/Conclusions

SBS in the present long-scale-length experiments
saturates ~1% and is how reasonably understood
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OMEGA long-scale-length experiments have flat velocity regions
similar to the NIF.

SBS is observed in these regions. Pf3d simulations and standard
SBS gain calculations agree well with observations.

SBS extrapolation to NIF direct-drive implosion experiments
predicts no problems in the low-density region.

The detailed NIF and OMEGA plasma profiles differ near n..

— Velocity gradients near n; are steeper in OMEGA experiments.

— NIF SBS gains near n. are higher due to gentler density
and velocity gradients.

— More detailed analysis is required.





