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Direct drive is a robust alternative for ignition
on the National Ignition Facility

E13846

• The baseline symmetric direct-drive cryogenic D2 campaign has 
 demonstrated target performance consistent with 1-D and 2-D 
 hydrocode predictions.

• Laser and cryogenic target uniformity are approaching
 the requirements for scaled ignition validation.

• DT cryogenic implosions will be performed before the end of FY05.

• OMEGA EP will be completed by the end of FY07.

Summary



OMEGA cryogenic targets are energy scaled
from the NIF symmetric direct-drive point design

E11251g

Energy ~ radius3;

power ~ radius2;

time ~ radius
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E12008l

A stability analysis* defines the ignition-scaling
performance window for low adiabat implosions

*P. W. McKenty et al., Phys. Plasma 8, 2315 (2001).

• The NIF gain and OMEGA yield can be related by

σ2 = 0.06σ�<10
2 + σ�≥10

2 ,

where the σ�’s are the rms amplitudes at the end of the acceleration phase*.

NIF (α = 3)
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T1905e

The best layer to date is 1.2-μm rms (all modes)
with the best regions below 1.0-μm rms

•  24 shadowgraphic views of “x” and “y”
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E13392

Absorption measurements for cryogenic D2 shots agree
with 1-D hydrodynamic simulations for all pulse shapes

The average difference between 1-D predictions
and absorption measurements is  –1±2%.
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E13394a

The reaction history and bang time are close to
the 1-D predictions for cryogenic D2 implosions

Shot 35970 (α ~ 25)
86-μm offset, 6.4-μm ice rms
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Preheat estimates for cryogenic targets are well below 
the threshold of concern (0.1%)

E13627

Preheat in CH shells and CRYO targets
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B. Yaakobi et al., “Measurement of Preheat Due to Fast Electrons in Laser Implosions
of Cryogenic Deutrium Targets,”  to be published in Physics of Plasmas.



E13393

Low-�-mode drive nonuniformities due to OMEGA
beams have been significantly reduced

• New DPP’s, better overlap, and beam
re-pointing have minimized low-�-mode
(� < 6) contributions.

σ2
tot = σ2

size + σ2
pntg + σ2

balance

SG3 = (1.5)2 + (2.2)2 + (1.3)2, σtot = 3.0%

SG4 = (0.6)2 + (0.7)2 + (0.6)2, σtot = 1.1%
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Hydrodynamic simulations are consistent with implosion
data over a wide range of ice roughness and target offset

Average error of offset = 10 μm
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Scaled ignition performance on OMEGA is approaching
the predicted equivalence of high gain on the NIF
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The near term cryogenic shot plan will be focused 
on high 〈ρR〉n and validating adiabat shaping

E13624a

• The working physics plan is geared toward direct-drive ignition 
on the NIF and includes

  1. adiabat shaping validation with pickets    

  2. high 〈ρR〉n    

  3. ignition-scale ρR/DT implosions    

  4. adiabat shaping validation with Rx drive pulses

  5. advanced cryogenic target designs including
    – fi ll tubes (NIF CTHS baseline)
    – wetted foams 
    – saturn targets (best prospect for PDD on the NIF)
    – cone in shell (FI)

   These objectives will be met with    These objectives will be met with    These objectives will be met with    These objectives will be met with ~1-μm rms ice 
  and  TCC offsets of   and  TCC offsets of   and  TCC offsets of   and  TCC offsets of ~10 μm (or less).



Tritium will be introduced gradually,
following a readiness review in June 

E13808

• A second FTS will be complete in July for concurrent D2
 cryogenic target production.

• One MCTC will be dedicated to DT operations.
  – At most, one DT implosion per shot day (up to 24/year/year/ ).

• Potential tritium contamination of the characterization station
 may limit the throughput for D2 implosions.

• The initial tritium fraction will be 0.1% and be raised 
 incrementally (×10) to reach 50:50 DT by fall 2005.
  – Layering studies can begin with 10% tritium.

• A dedicated cryogenic target test stand is being designed
 for advanced target development.
  – maintain production target throughput



TC5944g

The nonuniformity of the inner ice layer at the end
of the accelerating phase will be directly inferred
using the OMEGA EP HEPW laser system

*F. J. Marshall et al., Rev. Sci. Inst. 68, 735 (1997).

ΔXmotion = ν • Δt
= 5 × 107 • 5 × 10–12

= 2.5 μm

Monochromatic imager
(3-μm resolution)*

P target (~2.3 keV)
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OMEGA EP will be operational in FY07 (two beams)
and ready for target physics in FY08

OMEGA EP

60-beam
OMEGA

• There are four primary missions.

1. Extend ICF research
capabilities with high-
energy and high
brightness backlighting

2. Perform integrated fast-
ignition (FI) experiments

3. Develop advanced backlighter
techniques for HED physics

4. Conduct ultrahigh-intensity
laser–matter interaction research



OMEGA Laser Bay
Main
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OMEGA EP
Laser Bay
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Beam 1 2
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G5546t

The two short pulse beams can be
delivered to both target chambers
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The OMEGA EP building was completed in February 2005

E13574c

April 2004

Mechanical
room

OMEGA

Laser bay

Target Bay

Capacitor bay

Laser bay
slab, 1 m

January 2005

Laser bay
slab, 1 m

OMEGA EP Laser Bay

The source laser was installed in April 2005.



An OMEGA EP Use Plan is under development

E13897

• The OMEGA EP Use Plan will

  – defi ne the expected operating parameters and availability,

  – the avenues for non-LLE users to obtain access, and

  – initial experimental campaigns.

• The Use Plan will be completed in Spring 2006.

  – An informational and informal discussion meeting
   will be held at the 2005 APS/DPP meeting.

  – A workshop will be held at UR/LLE in December 2005/
   January 2006
    - to allow potential users to propose experiments
     and discuss access availability and 
    - to consider capabilities required to carry out the experiments.

• If you wish to be informed of, or participate, in this planning activity  
 and be included in the mailing list, contact

David D. Meyerhofer
Laboratory for Laser Energetics

ddm@lle.rochester.edu



Direct drive is a robust alternative for ignition
on the National Ignition Facility

E13846

• The baseline symmetric direct-drive cryogenic D2 campaign has 
 demonstrated target performance consistent with 1-D and 2-D 
 hydrocode predictions.

• Laser and cryogenic target uniformity are approaching
 the requirements for scaled ignition validation.

• DT cryogenic implosions will be performed before the end of FY05.

• OMEGA EP will be completed by the end of FY07.

Summary/Conclusions
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Ice roughness and target offset appear to limit the
measured 〈ρR〉n for higher-convergence implosions.

The measured 〈ρR〉n is close to 1-D
for all but the lowest-adiabat implosions
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F. Marshall et al., “Direct-Drive Cryogenic Implosions on OMEGA,”

to be published in Physics of Plasmas.
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