

T. C. Sangster OMEGA Experiments Group Leader University of Rochester Laboratory for Laser Energetics 35th Annual Anomalous Absorption Conference Farjardo, Puerto Rico 27 June–1 July 2005 Summary

Direct drive is a robust alternative for ignition on the National Ignition Facility

- The baseline symmetric direct-drive cryogenic D₂ campaign has demonstrated target performance consistent with 1-D and 2-D hydrocode predictions.
- Laser and cryogenic target uniformity are approaching the requirements for scaled ignition validation.
- DT cryogenic implosions will be performed before the end of FY05.
- OMEGA EP will be completed by the end of FY07.

OMEGA cryogenic targets are energy scaled from the NIF symmetric direct-drive point design

A stability analysis* defines the ignition-scaling performance window for low adiabat implosions

• The NIF gain and OMEGA yield can be related by

$$\bar{\sigma}^2 = 0.06 \, \sigma_{\ell < 10}^2 + \sigma_{\ell \ge 10}^2,$$

where the σ_{ℓ} 's are the rms amplitudes at the end of the acceleration phase*.

^{*}P. W. McKenty et al., Phys. Plasma <u>8</u>, 2315 (2001).

The best layer to date is 1.2- μ m rms (all modes) with the best regions below 1.0- μ m rms

Absorption measurements for cryogenic D₂ shots agree with 1-D hydrodynamic simulations for all pulse shapes

The reaction history and bang time are close to the 1-D predictions for cryogenic D₂ implosions

Preheat estimates for cryogenic targets are well below the threshold of concern (0.1%)

B. Yaakobi et al., "Measurement of Preheat Due to Fast Electrons in Laser Implosions of Cryogenic Deutrium Targets," to be published in Physics of Plasmas.

Low- ℓ -mode drive nonuniformities due to OMEGA beams have been significantly reduced

Hydrodynamic simulations are consistent with implosion data over a wide range of ice roughness and target offset

Average error of offset = 10 μ m

Scaled ignition performance on OMEGA is approaching the predicted equivalence of high gain on the NIF

1.0 - DRACO Normalized yield 0.8 **OMEGA** data 0.6 **α** = **6** 0.4 0.2 35713 $\alpha = 4$ 0.0 0.5 0.0 1.0 1.5 2.0 $\overline{\sigma}$ (µ**m**) 1-THz, 2-D SSD with PS, **1-μm-rms ice roughness**, 840-Å outer-surface roughness, 2% rms power imbalance

Target offset and ice quality presently limit access to low $\overline{\sigma}$ for $\alpha = 4$ campaign

The near term cryogenic shot plan will be focused on high $\langle\rho \textbf{R}\rangle_{\textbf{n}}$ and validating adiabat shaping

• The working physics plan is geared toward direct-drive ignition on the NIF and includes

UR

- 1. adiabat shaping validation with pickets
- 2. high $\langle \rho \mathbf{R} \rangle_{\mathbf{n}}$
- 3. ignition-scale ρ R/DT implosions
- 4. adiabat shaping validation with Rx drive pulses
- 5. advanced cryogenic target designs including
 - fill tubes (NIF CTHS baseline)
 - wetted foams
 - saturn targets (best prospect for PDD on the NIF)
 - cone in shell (FI)

These objectives will be met with ~1- μ m rms ice and TCC offsets of ~10 μ m (or less).

Tritium will be introduced gradually, following a readiness review in June

- A second FTS will be complete in July for concurrent D₂ cryogenic target production.
- One MCTC will be dedicated to DT operations.
 At most, one DT implosion per shot day (up to 24/year).
- Potential tritium contamination of the characterization station may limit the throughput for D₂ implosions.
- The initial tritium fraction will be 0.1% and be raised incrementally (×10) to reach 50:50 DT by fall 2005.
 Layering studies can begin with 10% tritium.
- A dedicated cryogenic target test stand is being designed for advanced target development.
 - maintain production target throughput

The nonuniformity of the inner ice layer at the end of the accelerating phase will be directly inferred using the OMEGA EP HEPW laser system

OMEGA EP will be operational in FY07 (two beams) and ready for target physics in FY08

- There are four primary missions.
 - 1. Extend ICF research capabilities with highenergy and high brightness backlighting
 - 2. Perform integrated fastignition (FI) experiments
 - 3. Develop advanced backlighter techniques for HED physics
 - 4. Conduct ultrahigh-intensity laser-matter interaction research

The two short pulse beams can be delivered to both target chambers

The OMEGA EP building was completed in February 2005

OMEGA EP Laser Bay

The source laser was installed in April 2005.

- The OMEGA EP Use Plan will
 - define the expected operating parameters and availability,
 - the avenues for non-LLE users to obtain access, and
 - initial experimental campaigns.
- The Use Plan will be completed in Spring 2006.
 - An informational and informal discussion meeting will be held at the 2005 APS/DPP meeting.
 - A workshop will be held at UR/LLE in December 2005/ January 2006
 - to allow potential users to propose experiments and discuss access availability and
 - to consider capabilities required to carry out the experiments.
- If you wish to be informed of, or participate, in this planning activity and be included in the mailing list, contact

David D. Meyerhofer Laboratory for Laser Energetics ddm@lle.rochester.edu Summary/Conclusions

Direct drive is a robust alternative for ignition on the National Ignition Facility

- The baseline symmetric direct-drive cryogenic D₂ campaign has demonstrated target performance consistent with 1-D and 2-D hydrocode predictions.
- Laser and cryogenic target uniformity are approaching the requirements for scaled ignition validation.
- DT cryogenic implosions will be performed before the end of FY05.
- OMEGA EP will be completed by the end of FY07.

The measured $\left< \rho \textbf{R} \right>_{\textbf{n}}$ is close to 1-D for all but the lowest-adiabat implosions

F. Marshall *et al.*, "Direct-Drive Cryogenic Implosions on OMEGA," to be published in Physics of Plasmas.