### On the Convective Two-Plasmon-Decay Instability in Inhomogeneous Plasmas





R. W. Short University of Rochester Laboratory for Laser Energetics

34th Anomalous Absorption Conference Gleneden Beach, OR 2–7 May 2004

#### **Summary**

## Accurate calculation of convective gain and absolute thresholds for TPD is greatly simplified in Fourier space

UR LLE

- TPD is limited to a narrow range of densities, which are well approximated by a linear profile. For such profiles, the eighth-order differential equation describing TPD becomes second order in k-space.
- For small  $k_{\perp}/k_0$ , the spatial gain is roughly an order of magnitude larger than the Rosenbluth formula and the absolute instability threshold is low.
- For larger  $k_{\perp}/k_0$ , the Rosenbluth formula is a better fit to the gain and the absolute threshold is larger, but the instability may be "effectively absolute" at pump intensities well below this threshold.

#### **Outline**



- Convective and absolute TPD in theory and experiment
- Advantages of the Fourier space approach
- Illustrative results
- Summary and conclusions

#### Both convective and absolute forms of the two-plasmondecay (TPD) instability are expected to play a role in laser-fusion experiments



- Convective instability: Plasma waves arising from noise enter the interaction region, are amplified, and propagate out at an enhanced level. Spatial growth is essentially a steady-state process. Spatial growth  $\to \infty$  represents the threshold of absolute instability.
- Absolute instability: Waves in the interaction region are amplified faster than they can propagate out; temporal growth continues until limited by nonlinear effects.
- Absolute instability predominates at small plasmon wave vectors; small group velocity, large phase velocity.
- Convective instability predominates at large wave vectors; large group velocity, smaller phase velocity (traps electrons more effectively).

### The current TPD experiments allow for a rough estimate of the plasma-wave spectrum





The absolute instability would be just above threshold for  $k_p \lambda_{De} <$  0.13.

### The equations describing TPD are difficult to treat in configuration space



• Using the velocity potential defined by  $\mathbf{v} \equiv \nabla \psi$ , the equations governing TPD can be written

$$\frac{\partial \psi}{\partial t} = \frac{e\phi}{m} - \frac{3\upsilon_e^2 n_1}{n_0} - v_0 \cdot \nabla \psi \; ; \; \frac{\partial n_1}{\partial t} + \nabla \cdot \left(n_0 \nabla \psi\right) + v_0 \cdot \nabla n_1 = 0 \; ; \; \nabla^2 \phi = 4\pi e n_1.$$

- These lead to an eighth-order ODE. Simplifications are of questionable validity near the plasma wave turning points.
- Simple generic three-wave convective instability theory gives the spatial gain formula  $G=\exp\left[\frac{2\pi\gamma_0^2}{|K'\upsilon_1\upsilon_2|}\right]$ . Constant parameters, and the exponential function of intensity must break down at the absolute threshold  $(G\to\infty$  for finite intensity).

### For a linear density profile, a more sophisticated treatment is feasible using Fourier transforms



- TPD is confined to a narrow range of densities below quarter-critical, so a linear density profile should be a good approximation.
- For a linear density profile, Fourier transforming in space leads to two coupled first-order ODEs in k-space:

$$\frac{dW_{+}}{d\kappa}=h(\kappa)W_{-}\text{, }\frac{dW_{-}}{d\kappa}=-h^{*}(\kappa)W_{+}\text{ for density profile }\frac{n_{1}}{n_{0}}=1+\frac{x}{L}\text{;}$$

coupling coefficient 
$$h(\kappa) = \frac{\alpha \left(\frac{k_y}{k_0}\right) \kappa e^{i\alpha\sqrt{\beta}\kappa(\kappa-2\Omega)}}{\sqrt{\left[\kappa^2 + \frac{1}{4} + \left(\frac{k_y}{k_0}\right)^2\right]^2 - \kappa^2}}$$
.

• Previous studies have employed this k-space formulation to treat the absolute instability (Liu and Rosenbluth, 1976; Simon et al., 1983).

### Both absolute and convective forms of TPD can be studied using the k-space approach



- Absolute modes are found by searching for temporally growing modes localized in k-space. This involves complicated contour integrations in complex k-space for complex frequencies (Simon et al., 1983). It can be difficult to obtain accurate results near the threshold.
- The convective instability can be studied using real k and ω; the absolute threshold can be identified with divergent spatial gain.
- $\begin{pmatrix} \mathbf{W}_+ \\ \mathbf{W}_- \end{pmatrix}$  represents the plasma wave amplitudes at  $\begin{pmatrix} \mathbf{k} + \mathbf{k_0}, \omega + \omega_0 \\ \mathbf{k} \mathbf{k_0}, \omega \omega_0 \end{pmatrix}$ .
- Incoming waves at large negative x are represented by  $W_{\pm}(\kappa \to \pm \infty)$  and outgoing waves by  $W_{\pm}(\kappa \to \mp \infty)$ .

### TPD amplification factors can be obtained by numerical integration of the k-space equations



#### **TPD** resonant interaction region



• Define the growth factor 
$$G = \frac{\text{out}}{\text{in}} = \frac{\left| \mathbf{W}_{+} \left( \kappa \to -\infty \right) \right|^{2} + \left| \mathbf{W}_{-} \left( \kappa \to +\infty \right) \right|^{2}}{\left| \mathbf{W}_{+} \left( \kappa \to +\infty \right) \right|^{2} + \left| \mathbf{W}_{-} \left( \kappa \to -\infty \right) \right|^{2}}.$$

then 
$$G_{max} = \frac{1+|b|}{1-|b|}$$
.

### Matching numerical integration to asymptotic expansions for large $\kappa$ aids accurate growth calculation



- The solutions become highly oscillatory and thus difficult to integrate accurately at large  $\kappa$ .
- Asymptotic series for the solutions at large  $\kappa$  are

$$W_{1}(\kappa) \sim 1 + \frac{iq\alpha}{4\sqrt{\beta}\kappa^{2}} + \frac{iq\alpha\Omega}{6\sqrt{\beta}\kappa^{3}} + \dots \qquad q \equiv \left(\frac{k_{y}}{k_{0}}\right)^{2}$$

and

$$\begin{aligned} & e^{i\alpha\sqrt{\beta}\kappa\left(\kappa-2\Omega\right)} \sqrt{\left(\kappa^2 + \frac{1}{4} + q\right)^2 - \kappa^2} \\ & W_2(\kappa) \sim \frac{\sqrt{q\kappa}}{\alpha\sqrt{q\kappa}} & \left(\frac{iq\alpha}{2\sqrt{\beta}\kappa^3} + \frac{iq\alpha\Omega}{2\sqrt{\beta}\kappa^4} + ...\right). \end{aligned}$$

• The numerical results can be matched to the asymptotic forms at moderate  $\kappa$ , allowing accurate calculation of the amplification.

# At small values of $k_y/k_0$ , spatial amplification is larger than predicted by the simple model and shows transition to absolute mode





### At larger values of $k_y/k_0$ , spatial amplification is closer to the simple model; absolute threshold is higher





### Off-resonance, instability remains convective, but gain may be large enough to make it effectively absolute





#### **Future work**



- Experiments at LLE indicate that TPD is often driven by multiple beams, so the model should be extended to overlapping beams at oblique incidence.
- Some mathematical questions remain: e.g., is there an absolute mode for arbitrary values of  $k_{\gamma}/k_{0}$ ?
- Benchmark simulation codes (A. V. Maximov, this session.)

#### **Summary/Conclusions**

# Accurate calculation of convective gain and absolute thresholds for TPD is greatly simplified in Fourier space

UR LLE

- TPD is limited to a narrow range of densities, which are well approximated by a linear profile. For such profiles, the eighth-order differential equation describing TPD becomes second order in k-space.
- For small  $k_{\perp}/k_0$ , the spatial gain is roughly an order of magnitude larger than the Rosenbluth formula and the absolute instability threshold is low.
- For larger  $k_{\perp}/k_0$ , the Rosenbluth formula is a better fit to the gain and the absolute threshold is larger, but the instability may be "effectively absolute" at pump intensities well below this threshold.