
The effects of implosion asymmetry on shock 
coalescence in OMEGA experiments
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Outline

• A series of D3He filled CH targets were driven on OMEGA with an intensity 
asymmetry dominated by mode P1.

• How does the asymmetric drive affect the convergence of the shock?

• How does the D3He yield of the shock flash depend on the symmetry of the 
shock convergence?

• How does ρR change between shock time and bang time in these 
asymmetric implosions?
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D-3He protons are emitted at
shock time and at bang time

“Shock Flash”
t = 1.8 ns

(ρR ~ 14 mg/cm2)
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Targets were displaced with respect to beam 
pointing in order to induce drive asymmetry

23 kJ in 60 beams pointed at
target chamber center (TCC)

26 µm CH 930 µm

18 atm D3He



Targets were displaced with respect to beam 
pointing in order to induce drive asymmetry

Target offset from TCC

23 kJ in 60 beams pointed at
target chamber center (TCC)

930 µm

≤ 150 µm offset



Resulting drive asymmetry is
dominated by mode l=1
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Asymmetric laser drive results in an 
asymmetric ingoing shock
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Asymmetric shock speeds lead to a 
displacement of the shock coalescence

TCC
Offset capsule center

Displaced shock coalescenceAsymmetric ingoing shock

For 100 µm offset from TCC, shock coalescence will be displaced by 105 µm.



X-ray images at shock time confirm the 
displacement of the shock coalescence

Measured X-ray emission at shock time (~1.8 ns) at φ ~ 90º

100 µm offsetno offset



The coalescence of displaced shocks
is temporally broadened
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The Proton Temporal Diagnostic 
confirms the longer duration of 
shock proton emission for target 
offset by 100 µm.

Displaced shocks have 
a longer duration.

~50 ps extra broadening 
for 100 µm offset target 



For centered shots, shape of  D3He proton 
spectra are similar at all angles
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For offset shots, shape of D3He proton spectra 
is strongly dependent on angle
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Experimental 
Spectra:
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2-D 
Simulations:φ =180º φ =79º φ =0º

Proton Energy (MeV)

P
ro

to
ns

 / 
M

eV
 / 

S
te

ra
di

an

No shock!

no offset

50 µm offset

100 µm offset

150 µm offset



D3He proton shock yield is largely insensitive 
to shock convergence symmetry
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Summary

• The shock coalescence is displaced in space and broadened in time.

• The D3He shock yield is less sensitive to drive asymmetries than 
simulations predict.

• A series of D3He filled CH targets were driven on OMEGA with an intensity 
asymmetry dominated by mode P1 with an amplitude up to 35% rms.

• How does the asymmetric drive affect the convergence of the shock?

• How does the D3He yield of the shock flash depend on the symmetry of the 
shock convergence?

• How does ρR change between shock time and bang time in these 
asymmetric implosions?

• Fredrick Séguin will address this question in the following talk.
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