Advanced Target Designs for Direct-Drive
Inertial Confinement Fusion
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Summary

Improved-stability, high-gain designs
are considered for direct-drive ICF
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» Direct drive offers the possibility of significantly higher gains
than indirect-drive ICF.

* New designs show significant improvements in shell stability
and target gain.

» Such designs implement adiabat shaping and foams wicked
with DT.

* The possibility of performing direct-drive ignition experiments

in NIF’s x-ray drive configuration (polar direct drive) is
currently being considered.
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A standard “all-DT” ignition design consists of a

DT-ice layer overcoated with a thin polymer layer
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There are several disadvantages

in using an “all-DT” design
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- Advantages
— Simplicity of the design

— Easy to tune (need to control one shock and
ohe compression wave)

« Disadvantages
— Marginal shell stability (severe constraints on laser smoothing)
— Low laser absorption (60% for NIF and 40% for OMEGA)
— Moderate yields
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Shell stability and compressibility
depend on the adiabat
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Stability of direct-drive targets can be substantially
enhanced using adiabat shaping
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o=3 picket-pulse target designs are considered
for the NIF and OMEGA
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Multimode ORCHID simulations demonstrate better
stability of the shaped-adiabat design
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Imprint simulations: / =2-200, DPP + PS, 1-THz SSD; OMEGA design
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Shell is significantly less distorted in the picket design.
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Both NIF and OMEGA picket designs are predicted

to stay intact during the acceleration phase
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« 1-THz, 2-D SSD; 80-nm outer-surface roughness; 1-um inner-ice roughness
- The bubble amplitude is calculated using the stability postprocessor.1
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2-D ORCHID simulations of an OMEGA target show

higher nonuniformity levels in the relaxation design
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Mode decomposition reveals enhanced high /-mode
amplitudes in the relaxation design
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High /-mode enhancement is due to early-time
Rayleigh—Taylor growth
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A surrogate foam target is proposed to mimic

conditions of the cryogenic designs
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« Cryogenic targets cannot be routinely used to study details of implosion.
c Al, 500 A Requirements for a surrogate:
3-5 um X,

(WK

1. Design should capture early RT growth.
« Density ratio overcoat/foam = 3 to 4

Warm foam

80-100 um « Overcoat thickness 3 to 5 um

2. Adiabat shaping is not compromised by
radiation from corona (p< 500 mg/cc,
430 um restrictions on high-Z constituents).

3. No additional instabilities are created
(p> 150 mg/cc).

 An unstable radiation ablation front
is created in low-density foams.

The optimal foam density is 180 to 250 mg/cc.
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Adiabat shaping is compromised
by coronal radiation in CH shells
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Adiabat shaping is maintained throughout

the implosion in 200-mg/cc foam design
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Multimode DRACO simulations indicate
greater shell stability in the picket design
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OMEGA foam target (200 mg/cm3) with 5-um-CH overcoat
(modes 2 to 200; 1-THz, 2-D SSD with PS)
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High-gain “wetted foam™ designs
have been considered for the NIF

Polyimide, 3 um

Time (ns)
Vimp = 3 x 107 (cm/s)  Viyp=3.9
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TC6222



The possibility of performing direct-drive ignition
experiments in NIF’s x-ray drive configuration

(polar direct drive) is currently considered? -
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1 See W03 by R. S. Craxton.
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Angular-dependent pulse shaping and target shimming

are considered to achieve implosion symmetry
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Summary/Conclusions

Improved-stability, high-gain designs
are considered for direct-drive ICF
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» Direct drive offers the possibility of significantly higher gains
than indirect-drive ICF.

* New designs show significant improvements in shell stability
and target gain.

» Such designs implement adiabat shaping and foams wicked
with DT.

* The possibility of performing direct-drive ignition experiments

in NIF’s x-ray drive configuration (polar direct drive) is
currently being considered.
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