Measurement of shock-coalescence timing and **r**R evolution of D³He implosions at OMEGA

Collaborators

C. K. Li, F. H. Séguin, J. DeCiantis, J. R. Rygg, S. Kurebayashi,

B. E. Schwartz and R. D. Petrasso*

Plasma Science and Fusion Center

Massachusetts Institute of Technology

J. Delettrez, V. Yu. Glebov, D. D. Meyerhofer, T. C. Sangster,

J. M. Soures and C. Stoeckl

Laboratory for Laser Energetics University of Rochester

S. Hatchett Lawrence Livermore National Laboratory

* Visiting senior scientist at LLE

Summary

Shock-coalescence timing and **r**R evolution of D³He implosions have been measured at OMEGA

- A series of 18-atm D³He filled CH capsules with thickness varying from 20 to 27 mm were imploded using 1-ns square laser pulses delivering 23 kJ.
- D³He-reaction rate and **r**R evolution were determined using a proton temporal diagnostic (PTD) in combination with several D³He-proton spectrometers.
- First results show that D³He proton production history is similar to DD neutron production history.
- Unique results from the PTD such as shock-coalescence time and shock-burn duration have been obtained and compared with 1-D calculations.
- Preliminary analysis suggests that low-mode **r**R asymmetries at shock time are mirrored at bang time.

Related work

Recent related papers:

R. D. Petrasso et al., Phys. Rev. Letters 90 (2003) 095002.V. A. Smalyuk et al., Phys. Rev. Letters 90 (2003) 135002.

Related talks and posters at this conference:

- J. DeCiantis et al, MP4
- V. Yu. Glebov et al., THO3
- J. R. Rygg et al, THO6
- F. H. Séguin et al., THO5

PTD data must be corrected for time dispersion caused by source and shell geometry, **r**R evolution, Doppler broadening and PTD response

- Source and shell geometry:
- Doppler broadening from T_i(t):
- PTD response:
- **rR evolution:**

From Proton Core Imaging data and X-ray imaging data (J. DeCiantis et al, MP4).

From calculations.

From Monte-Carlo simulations.

Needs to be determined.

Using neutron burn rate as initial input **r**R(t) was inferred from a fit to measured D³He-proton spectrum

A convolution of D³He production history and components causing time dispersion are used to fit measured PTD data

Number of free parameters used in fitting are equal to number of time bins with data.

First results show that D³He proton production history is similar to DD neutron production history

Similar bang time and burn duration are inferred from D³He proton and DD neutron production histories

Unique results from the PTD such as shock time and shock-burn duration have been obtained and compared with 1-D calculations

Using an iterative process **r**R(t) was determined from D³He proton production history and energy spectra

Preliminary analysis suggests that low-mode **r**R asymmetries at shock time are mirrored at bang time

Evolution of convergence ratio has been inferred from D³He proton production history and energy spectra

F. H. Séguin et al., THO5

Summary

Shock-coalescence timing and **r**R evolution of D³He implosions have been measured at OMEGA

- A series of 18-atm D³He filled CH capsules with thickness varying from 20 to 27 mm were imploded using 1-ns square laser pulses delivering 23 kJ.
- D³He-reaction rate and **r**R evolution were determined using a proton temporal diagnostic (PTD) in combination with several D³He-proton spectrometers.
- First results show that D³He proton production history is similar to DD neutron production history.
- Unique results from the PTD such as shock-coalescence time and shock-burn duration have been obtained and compared with 1-D calculations.
- Preliminary analysis suggests that low-mode **r**R asymmetries at shock time are mirrored at bang time.

