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Bragg reflection geometry is exploited to record
the trajectory of a microdot tracer layer ablated
into the blowoff plasma

• Long-scale-length plasmas relevant to direct-drive ICF target designs
for the NIF are generated on the 60-beam OMEGA laser system to study
the laser–plasma instabilities associated with multiple interaction beams.

• Time-resolved x-ray spectroscopy of microdot tracer layers is used to
characterize the plasma conditions created with massive, solid-density
plastic targets.

• The measured trajectories of ablated microdots are compared with
the predictions of the 2-D hydrodynamics code SAGE.

• The electron temperature and density profiles are diagnosed with
the measured line ratios of the K-shell emissions from the microdot.

• The predicted line ratios are calculated with SAGE and the
time-dependent FLY atomic physics code and compared with the
experimental results.

Summary
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Experimental investigation of expansion velocity and
gradients in long-scale-length plasmas on OMEGA

• Long-scale-length plasmas on OMEGA

• Time-resolved K-shell spectroscopy

• Measured microdot trajectory

• 2-D hydrodynamics code predictions

• Microdot time history of electron temperature and density

• Line ratios

• Conclusions

Outline
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Multiple-beam SBS interaction experiments used three
sets of delayed beams, six of them interaction beams
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• Plasma density scale lengths and Te roughly correspond to NIF
direct-drive conditions.

• Full-beam smoothing (1-THz 2-D SSD and polarization smoothing)

• SBS and SRS with and without time resolution in two beams
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Plasma conditions are diagnosed with time-resolved
K-shell spectroscopy of microdot tracer layer
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KCI microdot buried at 2 mm
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Laser-irradiated side

Microdot: KCI or TiCaF2
Diameter = 200 mm
Thickness = 0.1 mm

CH target

Buried depths:
2, 3, 4, 6 mm
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Time-integrated x-ray spectrum is recorded
to photometrically calibrate streaked spectrum
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Trajectory of KCI microdot recorded with time-resolved
x-ray spectroscopy is used to measure expansion
velocity of long-scale-length plasmas on OMEGA
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• K Hea provides a signature point
source of x-ray emission to chart
the microdot trajectory.

KCI microdot

Velocity
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Bragg crystal
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Projection of the expansion velocity
along the axis of the photocathode is recorded

X1:  diagnostic view (TIM 6)
X2:  axis of photocathode
X3:  normal to the plane of incidence

Expansion velocity along
target normal H17

X2

X3
X1

Planar target

Projection of expansion
velocity along axis of
photocathode.
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Microdot trajectories and blowoff velocities are
predicted with the 2-D hydrodynamics code SAGE
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Microdot time histories of ne and Te are predicted
with the 2-D hydrodynamics code SAGE
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Discrepancy is observed between measured micordot
trajectory and predicted trajectory for CH plasma
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A larger discrepancy is observed between the predicted
trajectory and the one measured for the Ti microdot
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Microdot time history of electron density is predicted
with SAGE profiles and measured microdot trajectory
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Microdot time history of electron temperature is predicted
with SAGE profiles and measured microdot trajectory
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Good agreement is observed between SAGE/FLY predictions
and measured results when line opacitites are included

KCI microdot buried at 2 mm

KCI Te
SAGE /expt. trajectory

• Side-on view for microdot trajectory measurement
• Normal-incidence view for line ratio measurement

KCI ne
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Bragg reflection geometry is exploited to record
the trajectory of a microdot tracer layer ablated
into the blowoff plasma

• Long-scale-length plasmas relevant to direct-drive ICF target designs
for the NIF are generated on the 60-beam OMEGA laser system to study
the laser–plasma instabilities associated with multiple interaction beams.

• Time-resolved x-ray spectroscopy of microdot tracer layers is used to
characterize the plasma conditions created with massive, solid-density
plastic targets.

• A discrepancy is observed between the measured microdot trajectory
and the predicted trajectory of a CH plasma (calculated with the 2-D
hydrodynamics code SAGE.)

• The electron temperature and density profiles are diagnosed with
the measured line ratios of the K-shell emissions from the microdot.

• Good agreement is observed between SAGE/FLY predictions (using
the measured microdot trajectory) and the measured line ratios when
the line opacities are included.

Summary/Conclusions


