Nonlinear Propagation of Laser Beams in Plasmas Near a Critical-Density Surface

A. Maximov, J. Myatt, and R. W. Short University of Rochester Laboratory for Laser Energetics 32nd Anomalous Absorption Conference Oahu, Hawaii 21–26 July 2002

Summary

Nonlinear propagation of light near critical-density surface has been studied using a non-paraxial modeling capability

- Near critical density the characteristic spatial and temporal scales for backward SBS and beam self-smoothing are similar.
- The angular and frequency broadening of backscattered light is increased when backward SBS is seeded by reflection from a critical-density surface.
- The red feature in the spectrum of backscattered light is consistent with the experimental results on OMEGA.

- Non-paraxial modeling of light propagation near a critical-density surface, which includes:
 - 1. backward SBS in an inhomogeneous plasma
 - 2. reflection from critical-density surface
 - 3. beam self-smoothing due to self-focusing
 - 4. interaction between different beams for multiple-beam irradiation
- Angular spreading and frequency broadening of backscattered light
- Oblique incidence of a laser beam on a critical-density surface and multiple-beam irradiation

The spectra of SBS backscattered light from solid CH targets on OMEGA have red and blue components

Interaction beam at normal incidence 352-20814 20836 20832 Inc. 351 aser 350 2 2 3 3 2 3 3 2 Time (ns) $9 \times 10^{14} \text{ W/cm}^2$ $3 \times 10^{14} \text{ W/cm}^2$ $9 \times 10^{14} \text{ W/cm}^2$ $8 \times 10^{14} \text{ W/cm}^2$ 1-THz, 2-D SSD 0.5-THz, 2-D SSD 1-THz, 2-D SSD No bandwidth with PS with PS (phase plate only) (no PS) **R_{SBS}** ~ 1% R_{SBS} ~ 4.5% **R_{SBS}** ~ 0.7% R_{SBS} ~ 0.3% **Red component:** seeded SBS (reflection off critical)?

Blue component: consistent with SBS growing from noise in hot spots (speckles) whose intensities are halved by polarization smoothing

Wavelength (nm)

Modeling of SBS and self-focusing near critical-density surface requires non-paraxial description of light propagation

- Simulations are performed with a 2-D non-paraxial code in the region 40 $\times 200$ laser wavelengths.
- Due to absorption and field swelling the average intensity on the boundary $I_b = 0.46 < I>, <I>$ is the average intensity in vacuum.

Profiles of density, flow, and temperature modeling OMEGAplasma near critical density (similar to simulations by *SAGE*).

> Average self-focusing parameter: $p_{sf} = 0.09 < I >_{14}$

The inhomogeneity scale of laser intensity is comparable to the laser wavelength.

Average backward SBS gain: $G_{sbs} = 0.85 < I >_{14}$

The frequency spectrum of backscattered light develops a red shift that moderately increases with the increase of laser beam intensity

Simulation time is about 20 ps; the hydro profiles do not change much.

The angular width of the backscattered light increases with increasing incident beam intensity

The non-paraxial model allows study of nonlinear light propagation for oblique incidence on the critical-density surface

• DPP beam with average intensity $\langle I \rangle_{14} = 6$ and angle of incidence 20°

 No spreading of backscattered light in angle or frequency is observed because reflection from the critical-density surface does not seed backward SBS, and backward SBS, growing from noise, is weak.

The spectrum of backscattered light is determined by backward SBS and reflection from the critical-density

The angular and frequency width of backscattered light increase under crossed-beam irradiation

Two DPP beams with average intensity $\langle I \rangle_{14}$ = 7 in each beam and angle of incidence \pm 20°

16

Time (ps)

Nonlinear propagation of light near critical-density surface has been studied using a non-paraxial modeling capability

- Near critical density the characteristic spatial and temporal scales for backward SBS and beam self-smoothing are similar.
- The angular and frequency broadening of backscattered light is increased when backward SBS is seeded by reflection from a critical-density surface.
- The red feature in the spectrum of backscattered light is consistent with the experimental results on OMEGA.
- The influence of SSD on laser beam propagation near critical density is now under study.