Effects of Fuel-Shell Mix upon Direct-Drive
Spherical Implosions on OMEGA
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Summary

Fuel-shell mix and its relationship to target performance
of direct-drive implosions on OMEGA are systematically
studied using nuclear diagnostics

- Implosions of pure 3He gas capsules with CD shell layer demonstrate
the existence of fuel-shell mix and its extent.

« Convergence ratios (CR) of ~11 were obtained irrespective of fill
pressures from 3 to 15 atm.

- Target performance degradations relative to 1-D predictions were
demonstrated to be strongly correlated with mix.

« The implications of the mix effects are less serious for cryogenic
targets (including future ignition targets) because of less cooling
by bremsstrahlung and no dilution of fuel.

E11749




Outline

E11750

Presence of fuel-shell mix

Effects of mix upon spherical implosions
Modeling of mix with a simple static model
Implication of mix for cryogenic targets




The increasing D3He yield with decreasing fill pressure
suggests more-severe mix with lower fill pressures

- The D3He yield increases as the gas-fill pressure decreases
(indication of more mixing) and falls off rapidly as the CD layer
is offset from the 3He fuel.
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Implosions of 15-atm capsules achieve ~85% of 1-D
predictions for both pR;,o; and pRgpe; While 3-atm capsules

achieve ~25% for pRy o and ~60% for pRgpqy
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While 1-D simulations predict high convergence ratios
for 3-atm capsule implosions (CR ~ 25), the implosions
achieve ~45% of 1-D predicted values (CR ~ 11,

similar to the 15-atm case)
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The ratios (Yo,/Y1p, Yop/Y1n) Indicate that mix
IS more severe for 3- atm implosions
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Experiments with a 1-ns square laser pulse show
no truncation of burn for 15-atm implosions, but ~20%
truncation of burn for 3-atm implosions
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The measured ion temperatures (yield averaged)
are generally higher than 1-D predictions
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The overall core performances are characterized
by comparisons between the experimental data
and the 1-D calculations
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More fuel-shell mix is inferred for 3-atm implosions
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Modeling of 15-atm implosions indicates that
~0.5 um of the original inner CH shell mixes into
the outer part of the fuel
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Modeling of 3-atm implosions indicates that ~0.9 um of
the original inner CH shell mixes into the entire core
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The implications of the mix effects are less serious
for cryogenic targets (including future ignition targets)

D2 or DT “shell” instead of CH shell

« Mix doesn’t dilute fuel
(fuel and “shell” are same material)

« Lower Z results in less cooling
by bremsstrahlung
(Z =1 instead of Z = 3.5)
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Summary/Conclusion

Fuel-shell mix and its relationship to target performance
of direct-drive implosions on OMEGA are systematically
studied using nuclear diagnostics

- Implosions of pure 3He gas capsules with CD shell layer demonstrate
the existence of fuel-shell mix and its extent.

« Convergence ratios (CR) of ~11 were obtained irrespective of fill
pressures from 3 to 15 atm.

- Target performance degradations relative to 1-D predictions were
demonstrated to be strongly correlated with mix.

« The implications of the mix effects are less serious for cryogenic
targets (including future ignition targets) because of less cooling
by bremsstrahlung and no dilution of fuel.
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