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Two-plasmon-decay instability is the primary source of
hot electrons in both planar and spherical experiments

Summary

• The 3ω/2 signature of the two-plasmon-decay instability correlates
very well with the hard x-ray emission in both planar and spherical
geometries.

• Smoothing by spectral dispersion (SSD) enhances the hard
x-ray emission in spherical and long-scale-length planar
experiments.

• Polarization smoothing (PS) using birefringent wedges lowers
the hard x-ray emission.

• Experiments using targets of different diameters indicate that
the overlapped intensity dominates the scaling of the hard x-ray
emission and the 3ω/2 signature of the two-plasmon-decay
instability.
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Hot electrons can significantly reduce the target gain

• The effect of an 80-keV hot-electron tail was simulated
using the fast-electron package in LILAC.

• About 4% of the energy absorbed into fast electrons couples
into the DT-ice fuel layer.
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The 3ω/2 signature of the two-plasmon-decay
instability is produced by Thomson scattering
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Four hard x-ray detectors using single-edge-type filters
are used to measure the hot-electron temperature

Filter Housing

Scintillator

Microchannel plate/
photomultiplier

Filter transmission ×
scintillator absorption

E
ff

ic
ie

n
cy

100

10–1

0 200 400 600 800 1000

Energy (keV)

HXRD2

300 keV

200 keV100 keV

HXRD1

HXRD3
HXRD4

10–2



E10941

Planar-foil experiments use three sets of delayed
beams, six of which are interaction beams
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The blue shifted peak is missing
in the 3ω/2 spectrum in planar experiments
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The hard x-ray signals from the planar experiments
show a trend of increased signal with SSD
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In spherical geometry, the overlapped intensity
on target depends on the target diameter
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The 3ω/2 signal from spherical experiments
shows the typical two-peak structure
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3ω/2 light correlates with hard x rays for square pulse

0.5

0.4

0.3

0.2

0.1

0.0
–500 0 500 1000 1500

S
ig

n
al

Time (ps)

Laser

3ω/2
signal

X rays
> 10 keV

• CH shell, 950-µm diam., 8 × 1014 W/cm2 overlapped, 1-ns square



E10922

Improvements in the single-beam nonuniformity by SSD
or PS affect the hard x-ray emission for spherical targets
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The hard x-ray signal, temperature, and 3ω/2 signal
correlate very well with the target radius for spherical targets
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Changing the target diameter is equivalent
to changing the laser power for spherical targets
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Two-plasmon-decay instability is the primary source of
hot electrons in both planar and spherical experiments

Summary/Conclusion

• The 3ω/2 signature of the two-plasmon-decay instability correlates
very well with the hard x-ray emission in both planar and spherical
geometries.

• Smoothing by spectral dispersion (SSD) enhances the hard
x-ray emission in spherical and long-scale-length planar
experiments.

• Polarization smoothing (PS) using birefringent wedges lowers
the hard x-ray emission.

• Experiments using targets of different diameters indicate that
the overlapped intensity dominates the scaling of the hard x-ray
emission and the 3ω/2 signature of the two-plasmon-decay
instability.


