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Abstract

Since Landau damping depends on the fine details of the distribution function near the phase
velocity of a wave, the effect of including small collisions in otherwise collisionless plasma
theory caused concern. This was presumably settled by Lenard and Bernstein1 (LB) long ago.
A similar concern arose about the phenomena of plasma echoes since this too depends
on fine details of the electron distribution at velocities close to wa /k, where wa is a fixed
antenna frequency and k is set by the antenna structure. Su and Oberman2 (SO) considered
this and concluded that there was a resulting decay of the echo signal as exp(–bx3/v5), where
b is proportional to the electron collision rate. Recently, Ng et al.3 (NG) questioned the validity
of SO (and implicitly of LB) and suggested that SO improperly expanded about the Van Kampen
continuum. All of this was motivated by an experiment by Skiff et al.4 (Skiff) that directly
measured the ion distribution function associated with ion sound waves downstream from
an antenna. The measurements did not seem to agree with their LB-like analysis.

We have reexamined the NG–Skiff analysis and show that the SO result is correct. In doing
so, we also obtain a new form of the LB dispersion relation, in terms of the incomplete gamma
function. This is much simpler than the result in LB and allows a rapid calculation of the decay
rates. We also show that the NG–Skiff analysis is inadequate for calculating the downstream
decay from an antenna. This must be done either by a boundary-layer method like that of SO
(but for the ion sound case) or by numerically inverting a new expression for the transformed
distribution function, which we have derived in a compact and convenient form. To our
knowledge, this has not yet been done. For this reason, it is premature to conclude that there
is any discrepancy between experiment and the theory of oscillations in weakly collisional
plasma.
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Schematic of the experimental apparatus

F. Skiff et al., “Linear Kinetic Modes in Weakly
Collisional Plasma,” Phys. Rev. Lett. 81, 5820 (1998)

Figure 1
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Amplitudes of the ion response
function (from SVD analysis)

Linear ion response amplitude contours

F. Skiff et al., “Linear Kinetic Modes in Weakly
Collisional Plasma,” Phys. Rev. Lett. 81, 5820 (1998)

Figure 2
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Complex-kz eigenvalues of the ion L-B equation for real ω

F. Skiff et al., “Linear Kinetic Modes in Weakly
Collisional Plasma,” Phys. Rev. Lett. 81, 5820 (1998)

Figure 3
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Complex-κ eigenvalues for the electron
L-B equation for real ω

C. S. Ng et al., “Kinetic Eigenmodes and Discrete Spectrum of Plasma
Oscillations in a Weakly Collisional Plasma,” Phys. Rev. Lett.  83, 1974 (1999).

Figure 4
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Skiff has a clever way to measure the ion velocity
distribution associated with ion-sound waves
in a weakly collisional plasma

• Experimental setup

– See adjacent Fig. 1 (ion-sound waves are generated).

– Detect fi by phase-locked, laser-influenced fluorescence.

– ne � 109 cm–3, Te = 2 eV, Ti = 0.07 eV, ωa = 10 MHz, B = 1 kG

– Obtain fi (vz, z, ωa) at 6150 points in z, vz space.

– Spatial Fourier analysis yields fi (vz, ωa/kz, ωa).

– There seems to be a single k⊥  in all cases.

– Contour amplitudes of |fi| are shown in Fig. 2(a).
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Singular-value decomposition yields a dominant
ion-sound mode and residual “kinetic” modes

• SVD analysis yields fi = Σ Angn(z)hn(vz).

• The largest-amplitude mode is at the expected ion-sound phase velocity,
and involves the bulk of the ion distribution [see Fig. 2(b)].

• Other SVD modes appear above the noise level. Their amplitudes
vary as ωa is changed, but their phase velocity is unchanged
[see Fig. 2(c)].
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• They use a model ion–ion collision operator (á la Lenard–Bernstein)
and assume the electrons respond adiabatically:

•
β

ωa
≅ 0.05

ωa
Ωi

≅ 1.3
k⊥ v⊥

Ωi
≅ 0.05

• They solve this linear equation for the eigenmodes and eigenvalues.
For real ω they find complex values of kz. (see Fig. 3; note  k⊥  fixed)

• One obtains a virtually undamped “acoustic” mode and many
damped “kinetic” modes.
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Comparison was then made with a theory
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Skiff noted at least three discrepancies with theory

• The observed spatial decay of the kinetic modes was much less
than that predicted by the imaginary part of the kz’s.

• The velocity distribution of the kinetic modes only qualitatively
resembled that of the calculated kinetic modes.

• The calculated spatial damping rate of the kinetic modes varied
as β1/2, while the classic Su–Oberman theory of echo damping
has a decay rate that varies as β.

• Skiff concluded that the Su–Oberman theory must be inadequate
since the ion-sound analysis is analogous to the electron plasma
wave analysis.
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Based on Skiff’s experiment, Ng et al. revisited the case
of electron waves in a weakly collisional plasma

• They concluded that Su and Oberman are wrong and attributed that
to expansion about the unperturbed Van Kampen continuum.

• They start again with Lenard–Bernstein model collision operator
and consider eigenmodes of the following equation:

• They solve for the eigenvalues and eigenmodes by Fourier transforms
in x and t, and by an expansion in Hermite polynomials in v. The result,
for real ω, is shown in Fig. 4. A most interesting difference exists between
the more strongly damped roots in the collisional case and those in the
collisionless case (Landau). There is very little difference, however,
in the least-damped roots.
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First, we consider the electron plasma
wave case (Ng versus Su–Oberman)

• The dispersion relation solved by Ng is identical to that of Lenard–
Bernstein (this is easy to show). L–B found that the least-damped mode
decays only slightly faster than the Landau value. They did not calculate
other modes, and indeed their DR is not in a convenient form.

• We have obtained a new expression for this DR by using a Fourier
transform in velocity. This is an extremely convenient form (expressed
in terms of the incomplete gamma function), and one obtains all the roots
shown in Fig. 4 via a PC and Mathematica.

• Unfortunately, the roots of this DR are mostly irrelevant in determining
the spatial variation downstream of an antenna (the Su–Oberman
echo problem).
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The antenna problem requires the solution
of a driven inhomogeneous kinetic equation

• The relevant equations are

where

• After Fourier transforms, and keeping only the driven terms, this is

• It is now necessary to solve the first equation for f.
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The solution of this equation
requires boundary-layer theory

• The spatial variation of f then follows from the Fourier inverse

• It is straightforward to obtain f in the form

where g is highly peaked at v = ωa/k

• Upon substitution in Poisson’s equation, one solves explicitly for E.
The end result for f itself is

where D represents the denominator of f above.
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The dominant contribution comes from the numerator,
and this is the Su–Oberman result

• The small contributions of the denominator are weakly related
to the zeros of D in the complex k-plane and represent decaying roots
of the L–B relation. These are explicitly ignored by Su–Oberman, as
dictated by echo experiment conditions.

• Su and Oberman never use the Van Kampen modes. They solve a
driven problem. Their result is correct.

f z,v,ωa( ) ∝ exp −βvt
2 z3 v5( )
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The calculation necessary for comparison with Skiff’s
experiment has not yet been carried out

• There is a long history of calculation of the decay rate of ion-sound
waves in weakly collisional plasma (much of it incorrect!).

• For Te >> Ti, one must include both ion-ion collisions and electron-ion
collisions, since it is electron Landau damping that dominates
in the collisionless case.

• The ion kinetic equation is proportional to E and then the Poisson equation
brings in fe. Hence, one must necessarily solve the electron kinetic equation
as well. This equation is in the form requiring a boundary-layer theory
solution, as in the electron plasma wave case. (Improper solution
of this equation was the origin of the earlier errors in the literature.)
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The spatial dependence of fi will take the following form

where

• We do not expect the contribution of the numerator (akin to
Su–Oberman) to be important. Now it is the large terms in the
denominator that will dominate. This has not yet been carried out.
It may be easier to do it numerically by initially taking Fourier
transforms in velocity as well.

• At this point, one cannot conclude that there is any significant
discrepancy between theory and the Skiff experimental results.
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Summary and conclusions

• Skiff has measured fi(z, vz) associated with an ion-sound wave
driven by an antenna in a weakly collisional plasma.

• Comparison with an “incomplete” theoretical model seemed
to indicate major differences and led to questions about earlier
plasma-wave echo damping work by Su and Oberman.

• We show that Su and Oberman’s results remain correct.

• We do obtain a new and simplified form of the dispersion relation
for electron plasma oscillations in weakly collisional plasma.

• We describe the theoretical calculation that must be done
for comparison with Skiff’s measurements.

• At the moment, there is insufficient evidence to indicate a difference
between theory and experiment.


