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SBS arises primarily in “hot spots” and seems
to be seeded by light reflected from critical

• Polarization smoothing (PS) reduces the level of SBS to that seen at half
the incident intensity without PS, implying that SBS levels are determined
by hot-spot intensities.

• Overlapping beams do not seem to “cooperate” in driving SBS.

• The red-shifted portion of the spectrum appears to derive from light
reflected from critical, but it is difficult to account for levels and shifts.

Summary
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Outline

• Aspects of SBS spectra

• Ion-acoustic modes in multicomponent plasmas

• Strong-damping SBS model and calculation of growth
factors in simulated profiles

• Summary and conclusions
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SBS spectrum consists of distinct
“red” and “blue” features
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SBS signal for shot 20836
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Ipeak = 7.4 × 1014 W/cm2
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“Blue” feature depends exponentially
on hot-spot intensity
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“Red” feature depends linearly
on hot-spot intensity
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Damping is fairly high, even for the
least-damped ion-acoustic mode
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In strongly damped plasmas the SBS gain may
computed by integrating a local gain factor

• The equation for SBS intensity is1  
∂ISBS

∂x
+
ISBS
Labs

=
IpumpISBS

Lgain
.

Here, Labs is the aborption length and Lgain is the local gain length:
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• The simulation code SAGE is used to provide the profiles of the plasma
parameters over which the above equations are integrated.

1C. J. Randall, J. A. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).
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The peak computed gain as a function of
wavelength agrees well with “blue” feature
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The present model does not account for
some observed features of the SBS emission

• Levels of the “red” feature lie below those expected from simple
inverse bremsstrahlung absorption.

• The increasing red shift at later times is not accounted for by the
SBS gain factor or the bulk hydro motion.

• These phenomena may result from hot-spot behavior near critical,
e.g., enhanced localized absorption and Doppler shift.
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Even at lower intensities the time history of the red
feature suggests SBS rather than simple reflection

SBS signal for shot 20843
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SBS arises primarily in “hot spots” and seems
to be seeded by light reflected from critical

• Polarization smoothing (PS) reduces the level of SBS to that seen at half
the incident intensity without PS, implying that SBS levels are determined
by hot-spot intensities.

• Overlapping beams do not seem to “cooperate” in driving SBS.

• The red-shifted portion of the spectrum appears to derive from light
reflected from critical, but it is difficult to account for levels and shifts.

Summary/Conclusion


