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Mix effects on particle yields can be described effectively
by mix modeling in the 1-D hydrocode LILAC

TC5664

MIT

• The mix model includes the transport of target constituents,
thermal energy, and turbulent energy due to both the acceleration
and deceleration instabilities.

• Including mix in 1-D simulations of experiments provides
improved predictions of primary and secondary particle yields
over a broad range of target performance.

Summary
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• Modeling of mix in 1-D

• Comparison of simulated and experimental yields

• Secondary neutron and proton production

• Conclusions



“Bubble and spike” mixing thickness is obtained from
a multimode Rayleigh–Taylor perturbation model*

TC5195a *S. W. Haan, Phys. Rev. A 39, 5812 (1989).

Takabe/Betti form for γ2(t)

Haan saturation
procedure for

Initial perturbation spectrum
Al(t = t0) specified at ablation
surface and fed through to
fuel–pusher interface over
time.
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Mix is modeled as a diffusive
transport process.
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The mix model is based on carefully
formulated phenomenology

TC5666

• Perturbations due to single-beam imprint were obtained from ORCHID
calculations based on measured single-beam nonuniformity.

• Beam-imbalance effects are based on power-imbalance measurements
from each shot and the geometrical superposition of the acceleration
distributions of 60 beams.

• The formulation of the perturbation growth using fully time-dependent
perturbation equations allows secular nonuniform irradiation effects
and “feedthrough” from the outer to the inner instabilities to be treated
as driving terms, rather than as instantaneous effects.

• Plausible flux limitation of the diffusive mix transport is obtained by
allowing that the mixed constituent profiles can remain self-similar
under expansion.



Mix modeling improves the agreement of simulated
primary neutron yield with implosion data
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• Data from eight shots (August 2000)

• Pure-CH shells, 20–27 µm, 900-µm diameter, D2 fill, 3–25 atm
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Primary yield ratios indicate that implosion degradation
is comparable to the predictions of mix modeling

TC5668
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Simulated and measured neutron-averaged temperatures
show some improved agreement with mix modeling
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Comparison of simulated with measured secondary
particle yield ratios suggests sensitivity to dynamics

TC5670

MITSecondary production efficiencies
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The spatial distribution of secondary particle
production depends on the extent of mix

TC5671

MIT
Total particle yields

0.01

Mass radius (µg) or [original CH thickness (µm)]

5

3

m
 ×

 d
n

/d
m

 (
×1

07
) 4

2

1.00.1

3 atm fill 15 atm fill
3

2

1

1

0

• Mix thickness (mxth) is from the 1:3 to 3:1 mix points at the time
of peak n1 production rate.

• With the mass-spatial distribution as plotted here, the area under
the curve is preserved.
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The relative timing of peak neutron production and
peak compression does not affect the coincidence of
primary and secondary production times
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Mix effects on particle yields can be described effectively
by mix modeling in the 1-D hydrocode LILAC
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• The mix model includes the transport of target constituents,
thermal energy, and turbulent energy due to both the acceleration
and deceleration instabilities.

• Including mix in 1-D simulations of experiments provides
improved predictions of primary and secondary particle yields
over a broad range of target performance.

• The validity of approximating multidimensional hydrodynamics
with a spherically symmetric model remains an issue.

Summary/Conclusion


