One-Dimensional Simulation of the Effects of Unstable Mix on Neutron and Charged Particle Yield from Laser-Driven Implosions

University of Rochester Laboratory for Laser Energetics

3-8 June 2001

Collaborators

J. A. Delettrez V. Yu. Glebov V. N. Goncharov P. W. McKenty P. B. Radha V. A. Smalyuk C. Stoeckl S. Skupsky

Laboratory for Laser Energetics University of Rochester

> J. Frenje C. K. Li R. D. Petrasso F. H. Séguin

Massachusetts Institute of Technology

Summary

Mix effects on particle yields can be described effectively by mix modeling in the 1-D hydrocode LILAC

- The mix model includes the transport of target constituents, thermal energy, and turbulent energy due to both the acceleration and deceleration instabilities.
- Including mix in 1-D simulations of experiments provides improved predictions of primary and secondary particle yields over a broad range of target performance.

- Modeling of mix in 1-D
- Comparison of simulated and experimental yields
- Secondary neutron and proton production
- Conclusions

"Bubble and spike" mixing thickness is obtained from a multimode Rayleigh–Taylor perturbation model*

• $\frac{d^2}{dt^2} A_{\ell} = \gamma^2(t) A_{\ell}$ including Bell-Plesset effects

- Takabe/Betti form for $\gamma^2(t)$
- Haan saturation
 procedure for

$$\mathsf{A}_\ell(\mathsf{t}) > rac{2\mathsf{R}(\mathsf{t})^\star}{\ell^2}$$

- Initial perturbation spectrum $A_{\ell}(t = t_0)$ specified at ablation surface and fed through to fuel-pusher interface over time.
- Mix is modeled as a diffusive transport process.

*S. W. Haan, Phys. Rev. A <u>39</u>, 5812 (1989).

The mix model is based on carefully formulated phenomenology

 Perturbations due to single-beam imprint were obtained from ORCHID calculations based on measured single-beam nonuniformity.

- Beam-imbalance effects are based on power-imbalance measurements from each shot and the geometrical superposition of the acceleration distributions of 60 beams.
- The formulation of the perturbation growth using fully time-dependent perturbation equations allows secular nonuniform irradiation effects and "feedthrough" from the outer to the inner instabilities to be treated as driving terms, rather than as instantaneous effects.
- Plausible flux limitation of the diffusive mix transport is obtained by allowing that the mixed constituent profiles can remain self-similar under expansion.

Mix modeling improves the agreement of simulated primary neutron yield with implosion data

- Data from eight shots (August 2000)
- Pure-CH shells, 20–27 μ m, 900- μ m diameter, D₂ fill, 3–25 atm

Primary yield ratios indicate that implosion degradation is comparable to the predictions of mix modeling

Simulated and measured neutron-averaged temperatures show some improved agreement with mix modeling

Comparison of simulated with measured secondary particle yield ratios suggests sensitivity to dynamics

The spatial distribution of secondary particle production depends on the extent of mix

- Mix thickness (mxth) is from the 1:3 to 3:1 mix points at the time of peak n₁ production rate.
- With the mass-spatial distribution as plotted here, the area under
- tcs671 the curve is preserved.

The relative timing of peak neutron production and peak compression does not affect the coincidence of primary and secondary production times

UR

Summary/Conclusion

Mix effects on particle yields can be described effectively by mix modeling in the 1-D hydrocode LILAC

- The mix model includes the transport of target constituents, thermal energy, and turbulent energy due to both the acceleration and deceleration instabilities.
- Including mix in 1-D simulations of experiments provides improved predictions of primary and secondary particle yields over a broad range of target performance.
- The validity of approximating multidimensional hydrodynamics with a spherically symmetric model remains an issue.