Determination of the Flux Limiter in CH Targets from Experiments on the OMEGA Laser

 $10^{20} = 10^{20} = 10^{19} = 0.065$ $10^{19} = 0.065$ 2 = 3 = 4Time (ns)

J. A. Delettrez et al. University of Rochester Laboratory for Laser Energetics 31st Annual Anomalous Absorption Conference Sedona, AZ 3–8 June 2001

Contributors

C. Stoeckl S. P. Regan P. W. McKenty D. D. Meyerhofer J. P. Knauer

University of Rochester Laboratory for Laser Energetics

Summary

Simulations of experiments on the OMEGA laser suggest slightly larger values than currently used for the flux limiter

- The timing and the level of both the shock yield and the onset of the compression yield are sensitive to the flux limiter.
- A flux limiter of 0.070 (sharp cutoff) gives general agreement with experiment for 1-ns square pulses and 20-µm CH shells.
- Differences for the 400-ps square pulse and the 28-µm CH shell imply that other factors affect target dynamics.

Conditions are right for improving parameters in the simulations of CH-shell targets using the neutron time-of-flight detector (NTD)

• The OMEGA laser provides reproducible pulse shapes and energy over the span of several months.

- NTD, along with the laser pulse shape diagnostics, provides the timing of neutron yield to within 50 ps.
- The timing of the shock yield and the onset of the compression yield are not affected by two-dimensional effects and mix.
- They can be used to refine simulation parameters, in particular the flux limiter.
- The previous method of determining the flux limiter from the trajectory of glass shells is not satisfactory because
 - CH shells are visible only during the peak of the pulse, and
 - the shell trajectory is not as sensitive to the flux limiter as the time of neutron production.
- Improved measurement of the absorption fraction is being developed.

Shots during the same week give reproducible NTD results

<u>UR</u> LLF

The neutron burn history shows details of the shock arrival and the stagnation phase of the implosion

Two different zoning schemes are possible when using the hydrocode LILAC

The size of the central zone affects mainly the shock yield for the 400-ps square pulse

For a 1-ns square pulse and a 20- μ m shell, a flux limiter of 0.07 (sharp cutoff) gives the best agreement with experiment for timing of NTD

For the 400-ps-pulse case, a flux limiter of 0.070 is not large enough to reproduce the experimental measurement

A flux limiter of 0.070 may be too large for 28-µm-thick shells

TC5654

For a 20- μ m shell and 1-ns square pulse, increasing the flux limiter brings the absorption fraction into the experimental error range

Summary/Conclusion

Simulations of experiments on the OMEGA laser suggest slightly larger values than currently used for the flux limiter

- The increased precision of the neutron time-of-flight (NTD) diagnostic and the reproducibility of laser shots permit a more precise determination of the flux limiter and central cell zoning.
- The timing and the level of both the shock yield and the onset of the compression yield are sensitive to the flux limiter.
- A flux limiter of 0.070 (sharp cutoff) gives general agreement with experiment for 1-ns square pulses and 20-μm CH shells.
- Differences for the 400-ps square pulse and the 28-µm CH shell imply that other factors affect target dynamics.
- Diagnostics are being developed to measure the flux-limiter in crogenic targets.