Multimode Simulations of the Richtmyer– Meshkov Instability Using *DRACO*

P. B. RADHA, T. J. B. COLLINS, J. A. DELETTREZ, D. KELLER, P. W. McKENTY, R. P. J. TOWN, P. WILSON*, and G. A. MOSES*

University of Rochester Laboratory for Laser Energetics

^{*}Fusion Technology Institute University of Wisconsin

Summary

Richtmyer–Meshkov instability can play an important role in the deceleration phase of an ICF implosion

- The shell of an imploding ICF capsule is decelerated by a series of reflected shocks.
- These shock interactions with the perturbed shell can cause Richtmyer–Meshkov growth.
- DRACO is a newly developed hydrodynamics code for ICF research.
- DRACO has been used to examine the Richtmyer–Meshkov instability in planar geometry.
 - Repeated shock-interface interactions increase the growth rate relative to one shock interaction.
 - Growth of modes can be suppressed by the presence of other modes.
 - Energy removed from the initial modes reappears in other modes.

The shell of an imploding ICF capsule is decelerated by successive reflected shocks

DRACO is a newly developed hydrodynamics code for direct-drive ICF research

- DRACO uses the ALE (arbitrary Lagrangian–Eulerian) formulation to solve the hydro equations.
- Physics modules to enable *DRACO* to simulate planar experiments have been added:
 - second-order rezoning
 - interface tracking
 - mixed-material EOS
 - laser-energy deposition
 - radiation transport

Interfaces between materials can be tracked in *DRACO* using methods based on volume fractions

 Youngs' method* uses the gradient of material volume fraction to draw a straight-line interface in the cell.

*D. L. Youngs, Physica D <u>12</u>, 45 (1984).

Interfaces between materials can be tracked in *DRACO* using methods based on volume fractions

Interface tracking in *DRACO* has been tested on a variety of problems

Classical Rayleigh—Taylor instability

A shock-tube simulation is useful to investigate the Richtmyer–Meshkov instability

- Richtmyer–Meshkov instability occurs due to the impulsive acceleration of a perturbed interface by a shock.
- Kelvin–Helmholtz instability leads to roll-up of the spike.

Code Test

DRACO shows good agreement with other codes* for the position of the interface and mix width

^{*}POLLUX—M. J. de C. Henshaw, Ph.D. thesis, University of HULL (1989).

^{*}VL2D—R. P. J. Town, Ph.D. thesis, Imperial College, London (1990).

Instability Growth

A succession of shocks reflected between the interface and the fixed wall decelerate the interface

The effect of successive shock—interface interactions is to increase the mix-width growth rate

Mode Coupling

A two-mode simulation is used to study mode coupling

- Small-scale mixing dominates with increasing amplitude of ℓ = 7 for constant a_2 .
- The width of the mix region increases with increasing amplitude of ℓ = 7 for this case.

A modal decomposition of the interface reveals the existence of mode coupling

 The growth of the longer-wavelength mode is decreased when the amplitude of the shorter-wavelength mode is higher.*

^{*}D. Ofer et al., "Mode Coupling in Nonlinear RT Instability," Phys. Fluids B 4, 3549 (1992).

Energy from the interacting modes reappears in other modes

 New modes that are sums and differences of the original modes and their harmonics appear in the nonlinear regime.