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Abstract

Typical ICF targets consist of a solid DT shell filled with DT gas. It is well known
that the inner surface of the shell is Rayleigh—Taylor unstable during the final phase
of the implosion when the shell is being decelerated by the large central pressure.
During the deceleration phase, the inner-surface nonuniformities grow rapidly, causing
of the cold-shell material to mix with the hot central plasma, which quenches of the
hot-spot ignition process.

We have found that mass ablation on the inner surface of the shell plays an important
role in stabilizing short-wavelength modes during the deceleration phase. The ablation
process is induced by the heat flux leaving the hot spot and being deposited on the
shell’s inner surface.

Two-dimensional planar and spherical codes have been developed to study the
linear phase of the instability. The single-mode growth rate is compared with the
theoretical predictions based on the large-Froude-number model of Ref. 1. It is shown
that the mass ablation through the inner-shell surface combined with the finite density-
gradient scale length significantly reduces the RT growth rate and suppresses short-
wavelength modes.
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York State Energy Research and Development Authority. The support of DOE does not constitute
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The deceleration-phase instability occurs
in the final phase of the implosion
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« of the shell is RT unstable

and its perturbations grow
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The deceleration-phase RT growth rates are reduced

by

ablation and density-gradient scale length
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Mass ablation at the inner shell surface
can reduce the RT

Finite density-gradient scale length instability growth

Compression of the shell

The results of the study show the significant
role of the mass ablation.

Finite density-gradient scale length is less important
than it is typically regarded.

The compression of the shell has little influence
on the instability growth rate.



Planar Model

Planar simulations reproduce the behavior
of ICF capsule implosions
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o Hot-spot temperature and radius and peak shell density have
the same order of magnitude in planar and spherical cases.
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Two stages of the deceleration phase are observed
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Deceleration by a series of shocks t < 1.7 ns
Continuous decelerationt > 1.7 ns
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Density-gradient scale length is lower than
its standard estimate (20% of the hot-spot radius®)
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Heat conduction produces mass
ablation at the inner shell surface
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Heated
layer

e The heat flux leaving the Heat
hot spot is deposited on
the shell’s inner surface,
causing mass ablation.
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The ablation velocity is determined from the energy balance
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e Hot-spot temperature profile: T, = T, [1 - r_]
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o Use the EOS: p,V, =2p, VT, /M, = 2mT, /M,

e Ablation velocity: V,_ =
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Ablation velocity is important
during the deceleration phase
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The deceleration-phase instability consists
of a RM phase and a RT phase
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e Linear RM instability is observed when shocks are coming.

o Exponential RT instability is seen during the continuous
deceleration stage.
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Theoretical predictions of the instability growth
are based on a sharp boundary model*
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Effect of Stabilizing Dynamic Finite density-gradient
compressibility ablation overpressure scale length is a
Is stabilizing. stabilizing factor.
p = density
k = wave number

v, = ablation velocity
L, = minimum density-
gradient scale length

n = perturbation *V. Goncharov, Ph.D. Thesis,
resses g = acceleration University of Rochester (1998).




Finite density-gradient scale length and mass
ablation have the largest stabilizing effect
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« Simple models include only d2n/dt2 = kgn,
compressibility, ablation, and L,,,.
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A significant reduction in RT
growth rates is due to ablation
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Ablation velocity in NIF capsules
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* From theory using Ty ¢ = 11.5 keV, pg, = 325 gr/cm3, Rps = 65 um — V, =25 um/ns
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Theoretical NIF linear growth factors are
significantly reduced by mass ablation
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e Growth rate formula from R. Betti, et al., Phys. Plasma 1998.

o NIF deceleration phase: g = 104 um/ns2, V, = 20 um/ns,
Rhs =70 um, Ly = 1 pm.

e Duration of deceleration phase ~ 100 ps.

NIF cutoff: / = 190
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Conclusions
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o Two stages of the deceleration-phase instability are observed:
deceleration by a series of shocks and continuous deceleration.

o Mass ablation through the inner surface and finite density-gradient
scale length are the most important factors during the RT growth.

o The significant reduction in the RT instability growth rate is due
to the mass ablation.
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