Numerical Simulations of the SSD-Smoothed Laser Beam Filamentation and FSBS in Plasma

A. Kanaev and C. J. McKinstrie

University of Rochester Laboratory for Laser Energetics

30th Annual Anomalous Absorption Conference Ocean City, MD 21–26 May 2000

Introduction

- Analysis of the SBS dispersion equation suggests that near-forward SBS can be driven resonantly by the finite bandwidth of a SSD laser beam.¹
- We have simulated the interaction of narrow-bandwidth (0.14-THz) and wide bandwidth (0.60-THz) light waves with ion-acoustic waves.
- In both cases near-forward SBS occurred, and the beam nonuniformity increased slightly.

A 2-D numerical model for SBS and filamentation was developed

- Our code solves the paraxial light-wave equation coupled with the ion-acoustic wave equation in t, z, and x.
- We used 1-D SSD boundary conditions for the laser beam $A(x,t) = A_0(x,t)e^{i\phi}ss_D(x,t)e^{i\phi}p_{PP}(x)$
- $A_0(x,t)$: flat-top profile with a rise time of $\sim 100 \text{ ps}$
- $\phi_{SSD}(x,t) = 3\delta_m \sin[2\pi\nu(t+\xi x)]$ with parameters relevant to OMEGA:

modulation depth $\delta_{m}=6.15,7.89$ modulation frequency $\nu_{m}=3$ GHz,9GHz grating parameter $\xi=1.11$ ns/m estimated bandwidth $\Delta\nu\simeq 2\nu_{m}$ $(\delta_{m}+2)$

Propagation through plasma changes the hot-spot intensity distribution

Intensity on the target plane during 700 ps

Propagation through plasma slightly increases the nonuniformity of a SSD-smoothed laser beam

For low SSD modulation frequency the transmitted light spectrum is widened and reshifted

$$I_0 \sim 2.5 \bullet 10^{14} \text{ W/cm}^2; \qquad \text{f\# = 6.7;} \qquad \text{n = 14\% n}_{\text{cr}};$$

$$v_{\text{m}} = 3 \text{ GHz}; \qquad \Delta v = 0.14 \text{ THz}$$

• The blue shifted spectral components are characteristic of near-forward SBS*.

The ion-acoustic spectrum provides further evidence of near-forward SBS

- Angles θ are related to wavenumbers k_{sx} by $k_{sx} = 2k_0 \sin(\theta/2)$.
- Energy is distributed uniformly across the spatial spectrum due to angular separation between neighboring lines $\Delta\theta$, determined from $k_{\text{sx}} = \frac{\omega_{\text{m}}}{c_{\text{e}}}$ is ~ 0.14°

For high SSD modulation frequency the transmitted light spectrum exhibits power exchange between existing lines

$$I_0 \sim 2.5 \bullet 10^{14} \ \text{W/cm}^2; \qquad \text{f\# = 6.7;} \qquad n = 14\% \ n_{cr};$$

$$\nu_m = 9.0 \ \text{GHz}; \qquad \Delta \nu = 0.60 \ \text{THz}$$

 We think that spectral broadening is limited by the aspect ratio of the speckles.

The ion-acoustic spectrum proves that power exchange is facilitated by near-forward SBS

- Angular seperation between neighboring lines ($\Delta\theta$ ~ 0.41°) is consistent with $k_{sx}=\frac{\omega_m}{c_s}$
- Lines, multiple of $\Delta\theta$, indicate that every EM sideband interacts with every other EM sideband.

Summary

Resonantly driven SBS was observed in simulation of SSD-smoothed beam propagation

- For 3-GHz SSD modulation, transmitted light spectrum was widened and red shifted.
- For 9-GHz SSD modulation power was exchanged between the spectral components of the incident light wave.
- In both cases the beam nonuniformity increased slightly.