Results of Two-Dimensional Simulations of Implosions
of D,-Filled-CH Shell Targets on the OMEGA Laser
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The purpose of this work is to study the effect
of single-beam nonuniformity and power imbalance
on target performance
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* Generic CH shell of 20-um thickness and a 450-um
radius, filled with 3 atm D».

* 1-ns square pulse with 0.2 THz SSD.
 Initial simulations were carried out with the 2-D hydrodynamic
code ORCHID to identify trends:

— 600 transverse zones; full sphere with cosine
modes 1-200 with random 0/n phase

— no material tracking
— no surface finish
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20-um-thick plastic shells driven by 1-ns square pulses
show similar stability to the OMEGA o = 3 cryo design
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The mix width is calculated using an instability model
with Takabe growth rates and Haan saturation.




The targets are irradiated with two pulses
with DPP spectrum*
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SSD is modeled by flipping the phase of each mode from 0
to = every coherence time t = 1/[Av sin(0.5 kd)], where
Av=0.2 THzand 6 =2 pm.

TC5251 *R. Epstein, J. Appl. Phys. 82, 2123 (1997).



For both pulse shapes, the target is far into the non-
linear regime near the end of the acceleration phase
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The shaped pulse perturbs the target more than the 1-ns square
pulse because it creates a larger imprint (Boehly, C02.01).
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At the end of acceleration, power imbalance
introduces larger lower modes, but reduces slightly
the high-order modes
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At stagnation the shell is made up of fairly
dense “blobs” with no spikes or mixing

Density contours for a 20-um shell with SSD
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Beam nonuniformity and power imbalance reduce
the peak total pR to values near measured levels
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A power spectrum of the relative modulation is
obtained from the 2-D image of the cold-shell opacity*
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e The image is obtained by subtracting the logarithm of the noise-
filtered images below or above the Ti K edge.

o Target includes an inner 2.1-um Ti-doped CH layer.
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The cold-shell pAR obtained from 2-D simulations
agrees well with the experimental value
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Also, similar total shell pAR values have been
obtained from the slowing down of DD protons.*

TC5415 *R. Petrasso (private communication)



At stagnation, adding the power imbalance to the single-
beam nonuniformity affects the inner-surface spectrum
but not that of the peak pR
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The spectrum of modulation of cold pAR from

Ti K-edge imaging compares well with
the spectrum from ORCHID simulation
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Summary

ORCHID simulations agree qualitatively
with experimental observations
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e Most modes saturate early in the acceleration phase.
— Large spikes and nonlinear behavior are observed.

e No significant R—T growth during deceleration
— Low-order modes (< 50) dominate shell distortion.
— Addition of power imbalance is not a factor in pR
spectrum at stagnation.
e Qualitative agreement with experimental results

— Addition of power imbalance leads to pR’s close
to measured levels.
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