Two-Dimensional Simulations of Cryogenic Deuterium Foil Acceleration for NIF Instability Experiments

3 mm 3 mm 0 mm 1 mm |<1.1 mm→ 5 mm

R. S. Craxton, J. P Knauer, and R. P. J. Town University of Rochester Laboratory for Laser Energetics 30th Annual Anomalous Absorption Conference Ocean City, MD 21–26 May 2000

Summary

Preliminary 2-D SAGE simulations indicate that cryogenic DD instability experiments are feasible using four NIF quads

- The spatial beam profiles and focusing conditions are critical.
- At $I_{las} = 3 \times 10^{14}$ W/cm², accelerations of ~6 × 10¹⁵ cm/s² are experienced for ~4 ns over a flat region of diameter \gtrsim 1.5 mm.
- The behavior of the center of the target can be modeled quite accurately in 1-D.

- Experimental concept
- 2-D SAGE simulations
 - staggered focusing
 - common focusing
- Enhancements to SAGE ray-tracing package (nonuniform deposition → target breakup)
- Predicted target trajectories
 - v → 3 to 4 × 10⁷ cm/s \triangle z ≈ 1 mm a ≈ 6 × 10¹⁵ cm/s²
- Comparison between 1-D and 2-D

A cryogenic DD target is accelerated by four groups of NIF beams with staggered focusing

At the end of the laser pulse, the central portion of the target has moved 1.1 mm and is fairly flat

With all beams focused to the same point, the edge of the accelerated target becomes underdense

The high temperatures are confined to the region heated by laser rays

Run 3160 TC5373

In the target that has become underdense, high temperatures penetrate to the rear

UR LLE

To improve deposition uniformity, the (r, θ) grid of starting ray positions changes with time

Uniform deposition is found for both focusing conditions in the central region

• Absorbed flux is integrated over Z.

On the flat portion of the laser pulse, a steady acceleration of 6 \times 10^{15} cm/s^2 is achieved in the center of the target

The acceleration for an equivalent 1-D calculation is a little higher (~ 10^{16} cm/s²)

UR

Similar target trajectories are found for 1-D and 2-D runs

Run 3160, 3168 TC5379

Preliminary 2-D SAGE simulations indicate that cryogenic DD instability experiments are feasible using four NIF quads

- The spatial beam profiles and focusing conditions are critical.
- At $I_{las} = 3 \times 10^{14}$ W/cm², accelerations of ~6 × 10¹⁵ cm/s² are experienced for ~4 ns over a flat region of diameter \gtrsim 1.5 mm.
- The behavior of the center of the target can be modeled quite accurately in 1-D.