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The ultraviolet diagnostic table (UVDT) situated on top of the south end-mirror structure in the OMEGA Target Bay is shown in
the foreground of the photograph. A full-aperture optical wedge in one of the 60 beams directs 4% of the laser light to the UVDT.
Scientists Sean Regan (left foreground) and John Marozas (right foreground) use the ultraviolet equivalent-target-plane (UVETP)
diagnostic stationed on the UVDT to investigate the performance of laser-beam smoothing on OMEGA with 1-THz-bandwidth,
2-D smoothing by spectral dispersion (2-D SSD) and polarization smoothing (PS) (see article featured on p. 49). Optomechanical
technician Rich Dean (far right) is seen positioning a distributed phase plate (DPP) in front of an OMEGA lens on the UVDT. The
UVETP diagnostic captures a magnified image of the OMEGA far field on a CCD camera, which is located inside the black
enclosure on the left side of the photograph. The Optical Manufacturing (OMAN) Group can be seen in the background installing
phase plates on the OMEGA target chamber.

In the OMEGA viewing gallery, scientists Sean Regan
(left) and John Marozas (right) discuss the on-target laser
irradiation nonuniformity levels. Direct-drive inertial con-
finement fusion strives to achieve uniform target irradia-
tion using two-dimensional smoothing by spectral
dispersion (2-D SSD), distributed phase plates (DPP’s),
polarization smoothing (PS) utilizing birefringent wedges,
and multiple-beam overlap. The article featured on p. 49
shows that the theoretical predictions of laser beam smooth-
ing with 1-THz-bandwidth, 2-D SSD and PS are in excel-
lent agreement with the measured performance.
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In Brief

This volume of the LLE Review, covering January�March 2004, features �Performance of 1-THz-
Bandwidth, 2-D Smoothing by Spectral Dispersion and Polarization Smoothing of High-Power, Solid-
State Laser Beams,� by S. P. Regan, J. A. Marozas, R. S. Craxton, J. H. Kelly, W. R. Donaldson, P. A.
Jaanimagi, D. Jacobs-Perkins, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, T. C. Sangster, W. Seka, V.A.
Smalyuk, S. Skupsky, and J. D. Zuegel (p. 49). Laser-beam smoothing achieved with 1-THz-bandwidth,
two-dimensional smoothing by spectral dispersion and polarization smoothing on the 60-beam, 30-kJ,
351-nm OMEGA laser system is reported. These beam-smoothing techniques are directly applicable to
direct-drive ignition target designs for the 192-beam, 1.8-MJ, 351-nm National Ignition Facility.
Equivalent-target-plane images for constant-intensity laser pulses of varying duration were used to
determine the smoothing. The properties of the phase plates, frequency modulators, and birefringent
wedges were simulated and found to be in good agreement with the measurements.

Additional highlights of research presented in this issue include the following:

� V. N. Goncharov (p. 54) considers the contribution of the gradients in the laser-induced electric field
to the current flow, heat flux, and electric stress tensor in laser-produced plasmas. The transport
coefficients, previously derived in the limit Z >> 1, are obtained for an arbitrary ion charge Z. It is
shown that the ponderomotive terms significantly modify the thermal transport near the laser turning
points and the critical surface.

� C. K. Li, F. H. Séguin, J. A. Frenje, R. D. Petrasso�PSFC-MIT, along with J. A. Delettrez, P. W.
McKenty, T. C. Sangster, R. L. Keck, J. M. Soures, F. J. Marshall, D. D. Meyerhofer, V. N. Goncharov,
J. P. Knauer, P. B. Radha, S. P. Regan, and W. Seka�LLE (p. 67) study the target areal-density (ρR)
asymmetries in OMEGA direct-drive spherical implosions. The rms variation δρ ρR R  for a
low-mode-number structure is approximately proportional to the rms variation of on-target laser
intensity δI I  with an amplification factor of ~1/2(Cr�1), where Cr is the capsule convergence
ratio. This result has critical implications for future work on the National Ignition Facility (NIF) as well
as on OMEGA.

� M. V. Kozlov, C. J. McKinstrie, and A. V. Maximov (p. 73) use the ion-fluid and Poisson (IFP)
equations with phenomenological damping terms and the light-wave equation to describe stimulated
Brillouin scattering (SBS) in one- and two-ion plasmas. A computer code is tested by comparing
numerical and analytical results in the linear limit. The code is used to compare effects of Landau
damping, pump depletion, and ion-acoustic nonlinearities on the saturation of SBS in one- and two-
ion plasmas. In the latter, SBS from fast and slow ion-acoustic waves are considered separately. SBS
is simulated for hydrocarbon (CH) plasmas with parameters typical for experiments on OMEGA.

� V. A. Smalyuk, T. R. Boehly, V. N. Goncharov, O. V. Gotchev, J. P. Knauer, D. D. Meyerhofer,
and T. C. Sangster (p. 90) report measurements of the imprint efficiency in 20-µm-thick plastic
foils driven by 351-nm laser light at an intensity ~2 × 1014 W/cm2. The measured target spatial
modulations were imprinted from spatial laser nonuniformities during laser-ablated plasma formation
at the beginning of the drive. The laser modulations consisted of broadband nonuniformities from six
beams incident at 23° to the target normal and single-mode perturbations from one beam incident at
48° to the target normal. The measurements were performed at a spatial wavelength of 60 µm with
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and without smoothing by spectral dispersion (SSD). The measured imprint efficiencies at 60-µm
spatial wavelength were 2.5±0.2 µm for the beam with 48° angle of incidence and 3.0±0.3 µm for
the beams with 23° angle of incidence. The SSD reduced modulations by a factor of ~2.5 at the same
spatial wavelength.

� C. K. Li and R. D. Petrasso�PSFC-MIT (p. 97) present an analytical model of the interaction of directed
energetic electrons with a high-temperature hydrogenic plasma. The randomizing effect of scattering
off both plasma ions and electrons is treated from a unified point of view. For electron energies of less
than 3 MeV, electron scattering is equally important. The net effect of multiple scattering is to reduce
the penetration from 0.54 to 0.41 g/cm2 for 1-MeV electrons in a 300-g/cm3 plasma at 5 keV. These
considerations are relevant to �fast ignition� and to fuel preheat for inertial confinement fusion.

� C. Stoeckl, W. Theobald, and T. C. Sangster; M. H. Key, P. Patel, and B. B. Zhang�LLNL; and
R. Clarke, S. Karsch, and P. Norreys�RAL (p. 103) report on shielding strategies to optimize the signal-
to-background ratio and to obtain high-quality x-ray spectra. The use of a single-photon�counting
x-ray CCD camera as an x-ray spectrometer is a well-established technique in ultra-short-pulse laser
experiments. In the single-photon�counting mode, the pixel value of each readout pixel is proportional
to the energy deposited from the incident x-ray photon. For photons below 100 keV, a significant
fraction of the events deposit all energy in a single pixel. A histogram of the pixel readout values gives
a good approximation of the x-ray spectrum. This technique requires almost no alignment, but it is very
sensitive to signal-to-background issues, especially in a high-energy petawatt environment.

� R. Betti and K. Anderson (p. 106) present the theory of the adiabat profile induced by a strong shock
propagating through a relaxed density profile in inertial confinement fusion (ICF) capsules. The
relaxed profile is produced through a laser prepulse, while the adiabat-shaping shock is driven by the
foot of the main laser pulse. The adiabat shape is calculated for the cases of intense, short prepulses
and weak, long prepulses. The theoretical adiabat profiles accurately reproduce the simulation results
to within a few-percent error. ICF capsules with a shaped adiabat are expected to benefit from im-
proved hydrodynamic stability while maintaining the same one-dimensional performances as flat-
adiabat shells.

� S. S. Kurebayashi, J. A. Frenje, F. H. Séguin, J. R. Rygg, C. K. Li, and R. D. Petrasso�PSFC-MIT;
V. Yu. Glebov, J. A. Delettrez, T. C. Sangster, D. D. Meyerhofer, C. Stoeckl, and J. M. Soures�LLE;
and P. A. Amendt, S. P. Hatchett, and R. E. Turner�LLNL (p. 122) investigate models for determining
the areal density of hot fuel (ρRhot) in compressed, D2-filled capsules. Measurements from three
classes of direct-drive implosions on OMEGA were combined with Monte Carlo simulations to assess
the impact of mix and other factors on the determination of ρRhot. The results of the Monte Carlo
calculations were compared to predictions of simple commonly used models that use ratios of either
secondary D3He proton yields or secondary DT neutron yields to primary DD neutron yields to provide
estimates of ρRhot,p or ρRhot,n, respectively, for ρRhot.

Valeri N. Goncharov
Editor
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Introduction
A direct-drive inertial confinement fusion (ICF) implosion of
a spherical capsule containing thermonuclear fuel is initiated
by the ablation of material from the outer shell surface with
overlapped, intense laser beams.1 The ablated shell mass
forms a coronal plasma that surrounds the target and acceler-
ates the shell inward via the rocket effect.1,2 Perturbations at
the ablation surface resulting from target imperfections and
laser irradiation nonuniformities (known as laser imprint) are
amplified by the ablative Rayleigh�Taylor (RT) instability as
the shell accelerates inward and are further amplified during
the deceleration phase.3�9 The RT instability can reduce the
thermonuclear yield of the implosion.1,2 The direct-drive
ICF program strives to reduce laser imprint levels by uniform
laser irradiation of the target. High-compression direct-drive
experiments require a 1% rms level of the on-target laser
irradiation nonuniformity averaged over a few hundred pico-
seconds.10 This is accomplished on the 60-beam, 30-kJ,
351-nm OMEGA laser system11 using two-dimensional
smoothing by spectral dispersion (2-D SSD),10,12�14 distrib-
uted phase plates (DPP�s),15,16 polarization smoothing (PS)
utilizing birefringent wedges,17�19 and multiple-beam over-
lap.20 These techniques are directly applicable to direct-drive
ignition target designs21 planned for the 1.8-MJ, 351-nm,
192-beam National Ignition Facility (NIF) at the Lawrence
Livermore National Laboratory.22

The 2-D SSD UV bandwidth (∆νUV) on OMEGA was
recently increased to 1 THz, and polarization smoothing was
added through the installation of a birefringent wedge in each
of the 60 beams. The amount of smoothing achieved with
1-THz, 2-D SSD and PS is reported. The experimental tech-
niques outlined in Ref. 14 are used to determine the single-
beam irradiation nonuniformity from the measured ultraviolet
equivalent-target-plane (UVETP) images of laser pulses hav-
ing constant intensity and varying duration. Simulations of the
experimental data using the properties of the phase plates,
frequency modulators, and birefringent wedges are shown to
be in good agreement with the measured results.

Performance of 1-THz-Bandwidth, 2-D Smoothing
by Spectral Dispersion and Polarization Smoothing

of High-Power, Solid-State Laser Beams

2-D SSD and PS
Laser-beam nonuniformities can be significantly reduced

for high-power/energy glass lasers using 1-THz, 2-D SSD and
PS. Two-dimensional SSD reduces the single-beam irradia-
tion nonuniformity as a function of time, while the PS provides
an additional, instantaneous reduction by a factor of 2  in the
on-target nonuniformity.10 The temporal dynamics of the
laser-beam smoothing with 2-D SSD and PS are illustrated in
Fig. 98.1. The curves plotted in Fig. 98.1 for 0.2-THz, 2-D
SSD (dashed line); 1-THz, 2-D SSD (dotted line); and 1-THz,
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Figure 98.1
The single-beam irradiation nonuniformity σrms is plotted as a function of
time for three laser-beam-smoothing conditions under consideration. Smooth-
ing curves of the predicted σrms [see Eq. (1)] are plotted for 0.2-THz, 2-D SSD
(dashed line); 1-THz, 2-D SSD (dotted line); and 1-THz, 2-D SSD with PS
(solid line). The experimental results are plotted for 0.2-THz, 2-D SSD
(triangles); 1-THz, 2-D SSD (diamonds); and 1-THz, 2-D SSD with PS
(circles). The model shows excellent agreement with the experimental results
that are a compilation of data from more than 200 laser shots. The error bars
are smaller than the symbols.
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2-D SSD with PS (solid line) represent the model predic-
tions14 for the single-beam irradiation nonuniformity σrms:

σ σ σrms asymp=
+









 +0

2 2t

t t
c

c
, (1)

where tc = 1/∆νUV is the coherence time, t is the averaging
time (i.e., pulse length), σ0 is the initial laser nonuniformity,
and σasymp is the asymptotic level of smoothing with 2-D SSD
and PS taken from Eq. (8) of Ref. 23. The σrms predicted with
Eq. (1) has been shown to be nearly indistinguishable from the
σrms predicted with the time-integrated simulation described
below.14 The model shows excellent agreement with the ex-
perimental results as discussed in the next section. The laser-
beam smoothing parameters are listed in Table 98.I. As seen in
Fig. 98.1, prior to reaching asymptotic levels, increasing ∆νUV
of the 2-D SSD from 0.2 THz (dashed line) to 1 THz (dotted
line) reduces the amount of time needed to smooth to a given
level of nonuniformity by a factor of 5. Also, for time t >> tc,
it reduces the level of nonuniformity at any given time by a
factor of 5 . A comparison of the smoothing curve for the
1-THz, 2-D SSD (dotted line) with the curve for 1-THz, 2-D
SSD with PS (solid line) shows that PS provides an instanta-
neous reduction in σrms by 2 .

Table 98:I:  Specifications for laser-beam smoothing.

2-D SSD
∆νUV (THz)

PS tc = 1/∆νUV
(ps)

σ0 σasymp

0.2 off 5 1.00 3.30 × 10–2

1.0 off 1 1.00 2.52 × 10–2

1.0 on 1 0.707 1.77 × 10–2

Laser-beam smoothing with PS is instantaneous, while 2-D
SSD produces uniform far-field spots on target in a time-
averaged sense. One-dimensional SSD is achieved on OMEGA
by frequency modulating the phase of the laser beam, wave-
length dispersing the beam using a diffraction grating, and
passing the beam through a phase plate placed just before the
focusing lens.10,12 Two-dimensional SSD is achieved by ap-
plying the 1-D SSD operations in two orthogonal directions.10

Highly reproducible spatial intensity envelopes and speckle
distributions are produced in the far field. The implementation
of PS on OMEGA is described elsewhere.10 Each UV beam,
polarized at 45° to the ordinary and extraordinary axes of a
birefringent wedge placed before the phase plate, is split into
two beams of equal intensities that refract through the wedged

surface at slightly different angles and focus on target with a
separation of ~85 µm, about 37 times the beam�s diffraction
limited width (f number times the laser wavelength = 2.3 µm).
The two beams each produce essentially the same speckle
pattern on target, determined by the phase plate, but since these
patterns are spatially uncorrelated with opposite polarization
states, they combine through the addition of intensities rather
than electric fields. This leads to the instantaneous reduction in
the nonuniformity by a factor of 2 .

The time-integrated far field is calculated by temporally
integrating the modulus squared of a 2-D spatial Fourier
transform of the UV near field. The complex-valued electric
field that describes the UV near field can be written as

v
E x y t E x y t i x y t

i x y t i x y

x i y y

B

, , , , exp , ,

exp , , exp ,

� exp � ,

( ) ≡ ( ) ( )[ ]

( )[ ] ( )[ ]

+ ( )[ ]{ }

−

�

�

⋅

0 2φ

φ φ

φ

D SSD

DPP

PS (2)

where E x y t0 , ,( )  defines the temporal and spatial beam enve-
lope, φ2-D SSD(x,y,t) is the 2-D SSD phase contribution,
φB(x,y,t) is the intensity-dependent phase contribution of the
B-integral,24 φDPP(x,y) is the static phase-plate contribution
that depends on the particular phase-plate design, and φPS(y)
is a linear phase term due to the birefringent wedge. The ideal
spatially and temporally varying phase due to 2-D SSD can be
expressed as

φ δ ω ξ

δ ω ξ

2 3

3

− ( ) ≡ +( )[ ]

+ +( )[ ]

D SSD x y t t x

t y

M M x

M M y

x x

y y

, , sin

sin , (3)

where the x and y subscripts denote the two smoothing dimen-
sions, δMx y,  is the modulation depth, ν ω πM Mx y x y, ,≡ 2  is
the RF modulation frequency, and ξx,y describes the variation
in phase across the beam due to the angular grating disper-
sion. The factor of 3 in Eq. (3) indicates that the electric field
has undergone frequency tripling from the IR to UV. The 2-D
SSD system parameters on OMEGA for the UVETP mea-
surements are δMx = 14 3. , νMx ≡ 10 4. GHz , ξx = 0.300 ns/m,
δMy = 6 15. ,νMy ≡ 3 30. GHz, and ξy = 1.13 ns/m, assuming a
nominal beam diameter of 27.5 cm. The modulation depths
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are given for the IR. The IR bandwidths, defined as
∆ν δ νx M Mx x= 2 and ∆ν δ νy M My y= 2 , correspond to ∆λx =
11.0 Å and ∆λy = 1.50 Å. The maximum angular spread ∆θ is
given by ∆ ∆θ ξ λ λ= ( )c , where c is the speed of light and
λ = 1053 nm. B-integral effects are negligible for all cases
except when the frequency modulation is turned off.14 The
linear phase term due to the birefringent wedge is

φ θPS PSy k y( ) = ( )0 sin ,∆

where k0 2= π λUV  is the UV laser wave number with λUV =
351 nm and ∆θPS = 47 µrad is the angular separation due to the
birefringent wedge.

Experimental Results and Analysis
A description of the UVETP diagnostic used in this study

can be found in Ref. 14. This diagnostic uses a full-aperture
optical wedge in one of the 60 beams to direct a small fraction
of the laser light to a phase plate and an OMEGA focusing lens,
and it records the UVETP image on a CCD camera (see Fig. 1
of Ref. 14). The capability of the UVETP diagnostic to resolve
fully individual speckles has been demonstrated.14 Shots with
PS have the birefringent wedge placed in the beam before the
full-aperture optical wedge. A far-field image recorded with
the UVETP diagnostic of a 1-ns square laser pulse with 1-THz,
2-D SSD and PS is presented in Fig. 98.2. The UVETP
diagnostic was configured with a phase plate that produced a
far-field spot with a super-Gaussian spatial-intensity envelope

I r r~ exp .
0

2 3( )[ ] . The image, which has been flat fielded,
shows a smooth spatial-intensity envelope [see the single-
pixel lineout overplotted on the image in Fig. 98.2]. The spatial
resolution and overall detector size of the CCD restrict the
UVETP measurement to slightly more than one-half of the
laser-beam diameter. As seen in Fig. 98.2, the laser beam is
centered on the photodetector, and 560 µm of the 1010-µm
(defined as the 95% enclosed energy contour) laser spot is
sampled. Alignment constraints for the compilation of laser
shots under consideration restrict the analysis to the central
~410 µm of the laser spot.

The amount of smoothing achieved with 1-THz, 2-D SSD
and PS is quantified from the power spectrum of the measured
UVETP image of Fig. 98.2. The UVETP images are Fourier
transformed with a 2-D Hamming filter applied to the data, in
order to obtain the power spectrum defined as the azimuthal
sum at each spatial frequency of the square of the Fourier
amplitudes. Good agreement is observed between the mea-
sured power spectrum for the 1-THz, 2-D SSD, and PS pre-
sented in Fig. 98.3(a) and the modeled spectrum determined

from simulated time-integrated far field. The wave number is
defined as k = 2π λSN , where λSN is the spatial nonunifor-
mity wavelength, and the l mode is defined as l = kR, where
R = 500 µm is the spherical target radius. The σrms reaches
2.7% averaged over 1 ns, in agreement with the predicted
2.8%. The σrms is defined here as the square root of the ratio
of the integral of power in the high frequencies (i.e., k ≥
0.04 µm−1 in the OMEGA target plane) to the integral of power
in the low frequencies (i.e., k < 0.04 µm−1). The envelope and
speckle were separated at wave number 0.04 µm−1 in the
calculation of σrms for two reasons. First, virtually all of the
envelope power is contained in the first three terms of the
Fourier transform, which have wave numbers k < 0.04 µm−1;
therefore, inclusion of additional terms in this sum increases
the envelope power by insignificant amounts. Second, the
smallest wave number of nonuniformity that can be smoothed
on OMEGA with 1-THz, 2-D SSD falls between the third and
fourth terms of the Fourier transform with wave numbers
0.031 and 0.046 µm−1. Therefore, all the wave numbers that
2-D SSD can smooth are in the range 0.04 µm−1 ≤ k < kc, where
kc = 2.7 µm−1 is the cutoff wave number. The birefringent
wedge was removed from the beamline, and another UVETP
image was recorded to quantify the amount of smoothing

Figure 98.2
Measured UVETP image of a 1-ns square laser pulse with 1-THz, 2-D SSD
and PS (shot 22835). As demonstrated with the single-pixel lineout through
the center of the beam, the laser beam has a smooth spatial-intensity envelope.
The spatial resolution and overall detector size of the CCD restrict the
UVETP measurement to slightly more than one-half of the laser-beam
profile. The laser beam is centered nominally on the photodetector, and
560 µm of the 1010-µm laser spot (defined as the 95% enclosed energy
contour) is sampled.
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achieved with 1-THz, 2-D SSD alone (i.e., no PS). Again, good
agreement is shown in Fig. 98.3(b) between the measured
power spectrum and the simulation with the expected 2
increase in σrms observed.

The measured σrms with 1-THz, 2-D SSD was also exam-
ined using 0.4-, 1.0-, and 3.0-ns square laser pulses. As shown
in Fig. 98.1, the 1-THz, 2-D SSD model [Eq. (1)] is in
agreement with the measured results. A more-extensive study
of the smoothing rates for 0.2-THz, 2-D SSD was reported in
Ref. 14, where it was shown with laser pulses having constant
peak power and pulse lengths ranging from 100 ps to 3.5 ns,
that the reduction in laser-irradiation nonuniformity is depen-
dent on the spatial nonuniformity wavelength. The measured
σrms for 0.2-THz, 2-D SSD is also plotted in Fig. 98.1 for
comparison with the 1-THz, 2-D SSD results. As can be seen
in Fig. 98.1 for the time t >> tc, but prior to reaching asymp-
totic levels, the measured σrms is reduced by 5  when ∆νUV
is increased from 0.2 THz to 1 THz, and it is further reduced
by 2 with PS. On OMEGA, beam overlap provides an addi-
tional 10  reduction in the nonuniformity on target; therefore,
with perfect energy balance and timing of the laser beams, a
σrms ~1% can be achieved on target with 1-THz, 2-D SSD and
PS in a few hundred picoseconds.

Conclusion
Direct-drive ICF experiments require a laser system with

excellent irradiation uniformity. Laser-beam nonuniformities
can be significantly reduced for high-power/energy glass la-
sers using 1-THz, 2-D SSD and PS. UVETP images of a single
OMEGA laser beam were recorded to quantify the single-
beam irradiation nonuniformity. The amount of smoothing
achieved with 1-THZ, 2-D SSD and PS was determined by
analyzing the power spectra of measured UVETP images of
square laser pulses of varying duration. Simulated power
spectra are in excellent agreement with the experimental data
and permit confident extrapolation to MJ-class laser systems.
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Introduction
Thermal transport plays an important role in direct-drive
inertial confinement fusion. The Spitzer�Härm heat flux1

qSH = �κSH∇T has been conventionally used in the direct-
drive inertial confinement fusion (ICF) hydrocodes. Here, κSH
is the Spitzer heat conductivity and T is the electron tempera-
ture. In the regions of the steep temperature gradients where
qSH exceeds a fraction f of the free-stream limit qFS = nTvT,
the Spitzer flux is replaced2 by fqFS, where n is the electron
density, vT T m=  is the electron thermal velocity, and f =
0.05 � 0.1 is the flux limiter. It has been known for more than
two decades3�5 that, in addition to the terms proportional to the
temperature gradients (thermal terms), the heat flux in laser-
produced plasmas contains ponderomotive terms that are due
to the gradients in the laser electric field. To our best knowl-
edge, no systematic analysis has been performed to address the
effect of such terms on the hydrodynamic flow in ICF plasmas.
As shown later, the ratio of the ponderomotive terms to the
thermal terms is proportional to R L LE T T E= ( ) ( )α v v 2

,
where vE LeE m= ω  is the electron quiver velocity, e is the
electric charge, E is the amplitude of the electric field, m is the
electron mass, ωL is the laser frequency, LT and LE are the
temperature and the electric field scale length, and α is a
constant. The ratio of the electron quiver velocity to the
thermal velocity is small for typical plasma parameters. In-
deed, v vE T I T( )2

150 4�  m
2

keV. ,λµ  where I15 is the laser
intensity in 1015 W/cm2, λµm is the laser wavelength in
microns, and TkeV is the electron temperature in keV. Using
I15 ~ 1 and T ~ 2 keV, we obtain v vE T( )2 0 02~ .  for λµm =
0.353 µm. The ratio R, however, can be of the order of unity
due to a large ratio L LT E .  Indeed, as the laser reaches the
turning point where the electron density equals nc cos2 θ, the
electric field decays toward the overdense portion of the shell
as6 E E~ ,max exp −( )2 3 3 2ζ  where n m ec e L= ω π2 24  is
the critical density, θ is the laser incidence angle,
ζ ω= ( )L n nL c z L2 3 ,  Ln ~ LT is the electron-density scale
length, and z is the coordinate along the density gradient.
Therefore, the electric-field scale length near the turning point
becomes L L L cE T L T~ .ω( )2 3  Substituting this estimate to
the ratio R and using LT ~ 10 µm and v vE T( )2 0 02~ .  gives

Effect of Electric Fields on Electron Thermal Transport
in Laser-Produced Plasmas

R L cE T L T~ ~ .α ω αv v( ) ( )2 2 3 0 6 .  As will be shown later,
the coefficient α is numerically large and proportional to the
ion charge Z; this makes R larger than 1. This simple estimate
shows that the ponderomotive terms become comparable to the
thermal terms in the electron thermal flux near the turning
point. In addition, the p-polarization of the electric field
(polarization that has a field component directed along the
density gradient) tunnels through the overdense portion of the
shell and gives a resonance electric field at the critical surface.6

The gradient of such a field is proportional to the ratio ω νL ei ,
where νei is the electron�ion collision frequency at the critical
surface. Substituting typical direct-drive experiment param-
eters into an expression for the electron�ion collision fre-
quency at the critical surface, ν ωei keV

3 2    10  L Z T� 1 5 3. ,× −

shows a significant contribution of the ponderomotive terms to
the heat flux near the critical surface.

In this article, the ponderomotive transport coefficients
are derived. Such coefficients have been considered previ-
ously.3�5,7�9 Reference 7 developed a method of solving the
kinetic equation by separation of the electron distribution
function on the high-frequency component due to the laser
field and the low-frequency component of the time-averaged
plasma response. Using such a method, the laser fields� contri-
bution to the electron stress tensor was obtained. A similar
method was used in Ref. 3, where the importance of the
ponderomotive effects on the electron thermal conduction was
emphasized. P. Mora and R. Pellat4 and I. P. Shkarofsky5 have
evaluated the contributions of the laser fields into the heat and
momentum fluxes. As was pointed out in Ref. 8, by not,
however, consistently taking into account the contribution of
the electron�electron collisions�the transport coefficients in
their results contain wrong numerical factors. A consistent
analysis was performed in Ref. 8, where results were obtained
in the limit of large ion charge. Such a limit was relaxed in
Ref. 9. The latter reference, however, contains numerous
typographical errors, so the results will therefore be rederived
in this article. The effect of ponderomotive terms on the
hydrodynamic flow in direct-drive ICF experiments will be
discussed in detail in a forthcoming publication.
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Model
We consider a fully ionized plasma in a high-frequency

electromagnetic field:

ε ω ω= ( ) + ( )[ ]− ∗1

2
E Er t e r t ei t i tL L, , , (1)

β ω ω= ( ) + ( )[ ]− ∗1

2
B Br t e r t ei t i tL L, , , (2)

where E and B are slowly varying (with respect to ei tLω )
electric and magnetic fields and E* and B* are the complex
conjugate (c.c.) of E and B. The electron distribution function
f obeys the Boltzmann equation

∂ ∂ ∂ε β
t f f e

c
f

J f f J f

+ + + +
×









= [ ] + [ ]

v E
v

r p 

ee ei

0

, , (3)

where E0 is the low-frequency electric field. Here,

J f
fT

k
kj k j

j
ei ei[ ] = 





−( )











3
8

3
2π

ν
∂
∂

δ
∂
∂

v
v v

v v v
v

(4)

is the ion�electron collision operator,

ν
π

ei =
4 2

3

4

2 3
e nZ

m T

Λ

v
(5)

is the electron�ion collision frequency,

Z e n e ni i
i

i i
i

=∑ ∑2 (6)

is the average ion charge, ni is the ion number density, n is the
electron density, ei is the ion charge, m is the electron mass, Λ
is the Coulomb logarithm, vT T m= ,  and T is the electron
temperature. The sum in Z  is taken over all ion species in the
plasma. The electron�electron collision integral is taken in
Landau form

J f f
e

m

d

f f

k

kj k j

j j

ee

 

 

,

.

[ ] =

× ′
− ′( ) − − ′( ) − ′( )

− ′

⌠

⌡



× −
′









 ( ) ′( )

2 4

2

2

3

π

∂
∂

δ

∂
∂

∂
∂

Λ

v

v v v v

v v

v
v v

v v

v v (7)

Next, following Ref. 7, we separate the electron distribution
function on the slowly varying part f0 and the high-frequency
component f1:

f f f e f ei t i tL L= + +( )− ∗
0 1 1

1

2
ω ω . (8)

Substituting Eqs. (1), (2), and (8) into Eq. (3) and collecting the
terms with equal powers of ei tLω , we obtain

∂ ω ∂ ∂

∂
ω

∂

t L

L

f i f f e f

e f
ie

f

J f f J f f J f

1 1 1 0 1

0 0

0 1 1 0 1

− + +

+ − × ∇ ×( )[ ]

= [ ] + [ ] + [ ]

v E

E v E

r p

p p  

ee ee ei, , , (9)

∂ ∂ ∂

∂
ω

∂

t

L

f f e f J f J f f

e
f

ie
f

J f f

0 0 0 0 0 0 0

1 1

1 1

4 4

1

4

+ + − [ ]− [ ]

= − + × ∇ ×( )[ ]



+ [ ] +




∗ ∗

∗

v E

E v E

r p

p p

ei ee

ee

 

c.c.

,

, . (10)

Then, to relate f1 with f0, we assume that the laser frequency
is high enough so f1 can be expanded in series of
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ωL f f f− ( ) ( )= + + ⋅⋅⋅1
1 1

1
1

2: ,  where f f L1
2

1
1 1( ) ( ) <<~ .ν ωei  Sub-

stituting the latter expansion into Eq. (9) gives

f
ie

f
L

1
1

0
( ) = −

ω
∂E p , (11)

f
e

f J f
L

t1
2

2 0 0
( ) = − +( ) − [ ]{ }

ω
∂ ∂ ∂ ∂v E Er p pei . (12)

To eliminate f1 from Eq. (10) for the low-frequency compo-
nent of the distribution function, we substitute Eqs. (11) and
(12) into Eq. (10). The result takes the form8

∂ ∂ ∂

ω
∂

∂
∂ ∂

∂ ∂

∂
∂ ∂

∂ ∂
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L i j
t i j
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f f e f J f J f f

e
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E E

E E
m

f

r p

0 0 0 0 0 0 0

2

2

2
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2
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2
0

4

1

2

1

+ + − [ ]− [ ]

=
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
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
+( ) +( )

+ +( ) + +( )

∗

∗

v E

E
v

v

r p
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r

ei ee

c.c.

 c.c.

,

∂∂
∂ ∂

∂ ∂ ∂ ∂

2
0

0 0 0

f

p p

J f J f f

i j

p p p pi j i j







− ( ) + ( )







ei ee , . (13)

Equation (13) is solved assuming a small deviation of the
electron distribution function f0 from Maxwellian fM:

f f t0 1= + ( )[ ]M ψ v p, , , (14)

where ψ << 1.  The kinetic equation for ψ is obtained by
substituting the expansion (14) into Eq. (13) and replacing the
time derivatives ∂t fM using the transport conservation equa-
tions. These equations, according to the standard procedure,10

are obtained by multiplying the kinetic equations by (v � v0)k

with k = 0, 1, 2,... and integrating the latter in the velocity
space. Here,

v v v v v0 0
1

= + ∫∫( )
ρ

d m f d m fi i i i (15)

is the mass velocity, ρ = nm + nimi � nimi is the mass density,
mi is the ion mass, vi is the ion velocity, and fi is the ion
distribution function. When k = 0, the described procedure
yields the mass conservation equation; k = 1 and k = 2 give the
momentum and energy conservation equations, respectively.
Omitting lengthy algebraic manipulations we report the final
result:8

∂tn n n+∇( ) +∇( ) =v V0 0, (16)

 

ρ∂ ρ ∂ ∂ ∂ σ ρ

ω
∂ ∂

t k k r e i r kj e k

L
e r r k j

k j

k j

p p E

e

m
n E n E E

v v0 0 0 0

2

2
2

4

+ ( ) = − +( ) − +
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v r

, (17)
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L e
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= + − −( )

v V q v

E V

r0

2 2
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3

2v ei
ei . (18)

Here we use the standard definitions

n d f n d f e= ∫ −( )∫ =v V v v v j0 0 0, ,   = (19)

q v v v v v= −( )∫ −( )m
d f

2 0 0
2

0, (20)

σ δkj k j e kjm d f p= ∫ −( ) −( ) −v v v v v0 0 0 , (21)

where Ti is the ion temperature, n is the electron density, j is
the current density, q is the heat flux, σkj is the stress tensor, pe
and pi are the electron and ion pressures, vE LeE m= ω ,  and
ρe = en + eini is the charge density. To simplify the derivation
of the transport coefficients, we assume v0 = 0 and neglect
terms of the order of m mi .  Next, the equation for the correc-
tion ψ to the Maxwellian distribution function is derived by
substituting Eq. (14) into Eq. (13) and using the conservation
equations (16)�(18). The resulting equation takes the form8
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where x T= ( )v v2 22 ,
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Next, we solve Eq. (22) assuming that the electron quiver
velocity is much smaller than the electron thermal velocity,
v vE T << 1, and ordering ∇T T E T~ .νeiv v2 3  The function ψ
is expanded as ψ = ψ1 + ψ2 + �, where ψ2 <<  ψ1. The first
approximation ψ1 is obtained by keeping only the terms of the
order of v TT T∇ ( )νei . The second-order correction ψ2 is
derived by retaining the first derivative of the electric field and
the second derivative of the electron temperature and density.

First-Order Approximation
Retaining the first spatial derivatives in temperature and

density and also terms proportional to v vE T
2 2 ,  Eq. (22) yields
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We look for a solution of Eq. (27) in the form

ψ

ν ν

1 11
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4 12
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ei ei

ln ln . (28)

Using definitions (19)�(21), the current density, heat flux, and
stress tensor in the first approximation become
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σ ασkj
E

E kj
mn1 24

15
( ) = ( )v , (31)

where λ νe T= v ei  is the electron mean-free path. The nu-
merical coefficients in Eqs. (29)�(31) have the forms

α
πj j

T xdxx e x1 2
3 2

13 140

4
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= ( )∫ Φ , (32)
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πq q
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= ( )∫ Φ , (33)

α
πσ

E xdxx e x= ( )∫ −∞4 5 2
110

Φ . (34)

Equations (29)�(31) show that the electric current and the heat
flux in the first approximation are proportional to the gradients
in temperature and pressure.1,10,11 The stress tensor, on the
other hand, depends on the laser electric field.3,7 Even though
the functions Φ11 and Φ22 do not enter into the first-order heat
flux, they contribute to the heat flux in the second approxima-
tion. Thus, we need to find all four functions Φ11�14. The
general form of the solution ψ1 [Eq. (28)] can be separated on
the following three types of functions: type I depends only on
the velocity modulus ψ1

I( ) = ( )Φ x ; type II is proportional to the
velocity vector and velocity modulus ψ1

II( ) = ( )A xj jv Φ ;  and
type III depends on the velocity tensor and velocity modulus
ψ1

2 2III( ) = ( ) ( ) ( )v vij E ij
xΦ , where Ai is the vector proportional

to the temperature, pressure gradients, or the electric field E0.
According to such a classification, the governing equations for
the functions of each type become

Type I:  eeδ φJ x xΦ( )[ ] = ( ), (35)

Type II:  ei eeA x J J x xj j jΦ Φ( ) [ ] + ( )[ ]{ } = ( )δ δ φv v vA , (36)

Type III:  
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δ φ , (37)

where φ(x) is defined by the right-hand side of Eq. (27). Since
the ion�electron collision operator has a very simple form, it
is straightforward to calculate J jei v[ ] and J ijei v2( )[ ]  using
Eq. (23):

δ
π
νJ

x
j jei eiv v[ ] = −

3

4 3 2 , (38)
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29
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= − ( )v . (39)

The electron�electron operator is more complicated, and the
evaluation of δJ xee Φ( )[ ],  δJ xjee v Φ( )[ ],  and δJ ijee v2( )[ ]Φ
requires lengthy algebra. Below is a detailed calculation of
δJ xee Φ( )[ ]. The integral part in the electron�electron collision
operator can be rewritten as

d f
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where function Σ(v) is found by multiplying Eq. (40) by vk.
This yields
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where y = cos θ and θ is the angle between v and v�. Integra-
tion over the angles gives

dy
y
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Substituting Eq. (42) into Eq. (41) yields

∑( ) = ∑( )x
n

x
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T

4

3 23 3 2v π
, (43)
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Thus, the electron�electron collision integral reduces to

δ
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v v v 3 2 . (45)

The next step is to substitute Eq. (45) into Eq. (35) and solve
the latter for Φ. To simplify the integration, the right-hand side
of Eq. (35) can be rewritten in the form

φ ∂
φ

x
f k f

x

xk
( ) =

( )
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1
3 2

M
Mv v . (46)

Then, integrating Eq. (35) once, the following integro-differ-
ential equation is obtained:

φ
ν

= ∑( )ei

Z
x , (47)

where function φ  is related to φ by integrating Eq. (46),

φ φ= ′ ′( ) ′∫ − ′
∞

e
dx x x e

x
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2
. (48)

To solve Eq. (47) we take the x derivative of both sides of
Eq. (47). This gives
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where γ α α, x x e dxxx( ) = ′ ′∫ − − ′1
0

 is the incomplete gamma
function. Introducing a new function g x dx x e x

x
( ) = ′ ′′( )∫ − ′∞

Φ ,
Eq. (49) becomes

g x
Z

x
dx x e

C

x
x

x

( ) = −
( )

′ ′ ′( ) +
( )

⌠
⌡


− ′2

3 3 2 3 20ν γ
φ

γei , ,
, (50)

where C is the integration constant. Thus, the function Φ(x)
can be expressed as a multiple integral of φ :

Φ x C C x dx dx e g xx( ) = + − ′∫ ′′ ′ ′′( )∫ ′′
1 2 . (51)

Next, we report the equations corresponding to the function of
the second and third types [Eqs. (36) and (37), respectively].
Equation (36) reduces to
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Equation (37) for the function of the third type becomes
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The heat transport coefficients in the first approximation
depend on functions Φ13 and Φ14, which belong to the function
of the second type and can be found by solving Eq. (52) with

φ νx x( ) = −





5

2
, ,   for   = 13 eiΦ Φ (54)

φ νx( ) = =1, .   for   14 eiΦ Φ (55)

To solve the integro-differental equation (52), function Φ(x)
is traditionally expanded10,11 in Laguerre polynomials12

Φ x A n Ln n( ) = ∑ ( ) 3 2.  As proposed in Ref. 9, it is more conve-
nient to use a more-generalized expansion in terms of Laguerre
polynomials L xn

α ( ).  The choice of these polynomials comes
from their orthogonal properties

e x L x L x dx
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!   if  >     1,  2,...Γ , , , . (56)

Evaluation of the integrals in Eqs. (32) and (33) becomes
particularly simple if

Φ13 14
3 2

( )
+= ( )∑x A n Ln

n

β β . (57)

Index β is determined by matching the polynomial expansion
(57) with the exact solution of Φ in the limit of Z →∞.
Calculations show that such matching speeds up the conver-
gence of the transport coefficients with the number of polyno-
mials in expansion (57). Taking the limit Z →∞  in Eq. (52)
yields

Φ Z x→∞ = −
4

3
3 2

πν
φ

ei
. (58)

Then, the choice β = 3/2�k with k = 0, 1, 2,� will satisfy the
requirement of matching Eq. (57) with the exact solution (58).
The parameter k is determined by minimizing the number of
terms in the polynomial expansion (1) to match the exact
solution for Z →∞  and (2) to reach the desired accuracy of
the transport coefficients for Z ~ .1  Calculations show that for
the case of functions Φ13 and Φ14, β = 1/2 satisfies such a
minimization criteria [it takes five terms in Eq. (57) to obtain
the transport coefficients with 1% accuracy]. Therefore, the
expansion becomes

Φ13 14 13 14
2

( ) ( )= ( )∑x A n Ln
n

 . (59)

Multiplying Eq. (52) by x e L xx
s

3 2 − ( )α  with s = 0, 1, 2,�,
N�1 [where N is the number of polynomials in the expansion
(57)] and integrating the latter in x from 0 until ∞, we obtain
the system of N algebraic equations. Figure 98.4 shows a
dependence of the coefficients α j

T
1 and αq

T
1  on the number of

polynomials in the expansion (57) with β = �1/2, β = 1/2, and
β = 3/2, respectively. Observe that the coefficients converge
faster with β = 1/2.

Next, we derive the numerical coefficient ασ
E  of the stress

tensor σ ij
1( ). This requires that Eq. (53) be solved with Φ(x) =
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Similar to the previously considered case, we expand function
Φ11 in Laguerre polynomials. To express ασ

E  through just one
coefficient in such an expansion, we take

Φ11
5 21 1= ( ) +∑x B n Ln

n

β β . (61)

The choice of the power index β1 comes from the condition of
matching expansion (61) with the exact solution in the limit of
Z →∞. Neglecting terms proportional to 1 Z  in Eqs. (53)
and (60) gives

Φ11
1

8

1

12
x

xZ( ) = +
→∞

. (62)

It is easy to see that the values β1 = �1, �2, �3,� satisfy our
requirement. Calculations show that expansion (61) with
β1 = �1 has the fastest convergence with the number of poly-
nomials. Table 98.II shows a summary of coefficients ασ

E  for
a different ion charge Z . Observe that the stress tensor has a
very weak dependence on Z  (3% variation in ασ

E  from Z = 1
to Z = ∞). One more function remains to be determined in the
first approximation: the correction Φ12 to the symmetric part
of the distribution function. This function belongs to the first
type and can be found in the integral form using Eq. (51) with

φ
π ν

x x
x

( ) = − +

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






3

2

3

4 3
ei (63)

Table 98.II:  Transport coefficients in the first approximation.

Z 1 2 3 4 5 10 30 80 ∞

α j
T
1 –1.39 –2.1 –2.57 –2.91 –3.16 –3.87 –4.59 –4.89 –5.09

αq
T
1 –7.66 –12.11 –15.19 –17.46 –19.23 –24.31 –29.86 –32.27 –33.95

α j
T
2 –1.99 –2.34 –2.54 –2.67 –2.77 –3.01 –3.25 –3.34 –3.39

αq
T

2 –6.35 –7.93 –8.90 –9.57 –10.07 –11.40 –12.70 –13.23 –13.58

ασ
E 1.029 1.027 1.023 1.020 1.017 1.010 1.004 1.002 1.000

Figure 98.4
Coefficients α j

T
1 and αq

T
1  as functions of the number of polynomials in the expansion (57). The results correspond to β = �1/2 (dashed line), β = 1/2 (solid

line), and β = 3/2 (dots).
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and Φ = Φ12. The integration gives8

Φ12 2 2 2
1

12 3 2
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dt t x t

t

x

( ) = − + −
−( )

( )[ ]
⌠

⌡














�
,
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γ
(64)

where C2 and �C2 are determined from the condition of zero
contribution of Φ12 to the electron density and temperature,

dxe x x dxe x xx x−∞ −∞( )∫ = ( )∫ =Φ Φ120
3 2

120
0 0, .   (65)

Conditions (65) yield C2 = 0.721 and �C2 = 0.454. Note two
misprints in Φ12 reported in Ref. 8 [the different sign in front
of the integral and (x � t) instead of (1 � t) inside the integral].
The correction to the symmetric part in the distribution func-
tion comes mainly from balancing the inverse bremsstrahlung
heating π νx E Tei 3 2 2v v( )  with the electron�electron colli-
sions δJee. Since δ νJ Zee ei~ ,  function Φ12 becomes pro-
portional to the average ion charge Z ,  as shown in Eq. (64).
As emphasized in Ref. 8, the symmetric correction Φ12
gives the dominant contribution to the heat flux in the second-
order approximation.

Second-Order Approximation
Correction ψ2 to the distribution function in the second

approximation satisfies the following equation:8

x
en

x
nT

T

nT
e

T

xE

T

−




∇

− −





∇
+ ∇






+ ∇ ∇ −









+
∇

+ +( ) + −





( ) ( )5

2

3

2

2

3 3

1

3

1

2 6

1 1 2

13
2

14
0

2

2 12 13 14

j q

E

v

v

v

v

νei

 

Φ

Φ

Φ Φ Φ

ln

ln

+
( )

−( )−

+
( )

+ −






















+ ( )
( )

−





=

v

v

v

i r E ik

T
t

ij

i j
r r

j

ijk

r E ij

T

k

i j

k

x x
e

T

T

r r
nT

eE

T

∂

ν
∂

ν
∂
∂ ∂

∂ ∂

∂

v
v E

v

v
v

2

2 11 14 0

2

13

2

14
0

3

2

4 11

10
8

1

8

Φ Φ

Φ Φ

Φ

 

 

ei

ei

ln
ln

δδ ψ δ ψJ Jei ee2 2[ ] + [ ]. (66)

A general solution of Eq. (66) can be written as
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The electric current and the heat flux in the second order take
the form
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Coefficients α j q
E
( )  are calculated using the following rela-

tions:

α
πj

E xdxx e x1 2 3
3 2

21 2 50

4

3, , ,( )
−

( )
∞

= ( )∫ Φ (70)

α
πq

E xdxx e x1 2 3
5 2

21 2 50

4

3, , .( )
−

( )
∞

= ( )∫ Φ (71)

Next, we find functions Φ21, Φ22, and Φ25. These functions are
of the second type; therefore, to obtain them we solve Eq. (52)
with

φ ν= −( )x

10
8 111Φ Φ Φ, ,   for = 21 ei (72)

φ ν= + +( ) + −Φ Φ Φ Φ Φ12 13 14
1

3

1

2 6

x
, ,   for = 22 ei (73)

φ ν= Φ Φ Φ14, .   for = 25 ei (74)

Following the method described in the previous section, func-
tions Φ21, Φ22, and Φ25 are expanded in series (57). The exact
solution for Φ21 as Z →∞  becomes

Φ21

3 22

15
1

3Z
x x

→∞
= − −



π

; (75)

thus β takes the values β = 3/2�k with k = 0, 1, 2,�. The fastest
convergence of the coefficients α j

E
1 and αq

E
1 is obtained with

β = 1/2. A summary of α j
E
1 and αq

E
1 for different ion charge Z

is given in Table 98.III. Next, we find the function Φ22. The
exact matching of the polynomial expansion (57) with the
exact solution Φ22 for Z →∞ ,

Φ Φ22

3 2

12
4

3Z
x

→∞
= −

π
, (76)

cannot be done since Φ12 does not have a polynomial struc-
ture [see Eq. (64)]. It is easy to show, however, that
Φ12 0 1x x→( ) ~  and Φ12

5 2x x→∞( ) ~ . Therefore, the
expansion of Φ22 with β = 1 reproduces the asymptotic limits
for x << 1 and x >> 1. Taking β = 1 and keeping N = 5 terms in
expansion (57) gives values of α j

E
2  and αq

E
2, which are

reported in Table 98.III. Observe that these coefficients be-
come quite large for Z >> 1.  To find the remaining coefficients
in the heat flux and electric current, we solve the equation for
the function Φ25. In the limit of Z →∞ , the function Φ25
becomes

Φ Φ25 14

3 2
34

3

16

9Z Z
x

x
→∞ →∞

= − =
π π

; (77)

thus, β = 3, 2, 1� matches the polynomial expansion (57)
with the exact solution in the limit of Z →∞. Calculations
show that β = 1 requires a minimum number of polynomials
in expansion (57) to achieve the desired accuracy. The values
of α j

E
3  and αq

E
3 are summarized in Table 98.III. Next, we

Table 98.III:  Transport coefficients in the second approximation.

Z 1 2 3 4 5 10 30 80 ∞

α j
E
1 –0.03 –0.01 0.00 0.02 0.03 0.06 0.09 0.10 0.11

αq
E
1 –0.03 0.07 0.16 0.23 0.30 0.49 0.73 0.83 0.90

α j
E
2 4.05 8.54 13.07 17.51 21.86 42.30 116.3 Z  3.66 Z  3.48

αq
E
2 19.7 48.3 80.0 113.0 146.6 314.1 960.9 Z  31.7 Z  31.3

α j
E
3 4.69 7.21 9.07 10.51 11.67 15.15 19.18 21.00 22.28

αq
E

3 16.77 28.75 38.45 46.39 52.99 74.05 100.6 113.3 122.5
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combine the electric current and the thermal flux in the first and
second approximations. The result is

j
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Imposing a condition of zero current j = 0 and also assuming
tE j

E
j
Tν α αei << 3 2  (where tE is the time scale of E0 variation)

define the slowly varying component of the electric field E0,
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Substituting E0 from Eq. (80) into Eq. (79) gives the heat flux
in laser-produced plasmas,
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where

β α α α αT
q
T

q
T

j
T

j
T= −1 2 1 2 ,
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can be represented with the following fitting formulas:
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3 47
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.
.

.
. (83)

In addition, the coefficients in the electric field E0 can be fitted
as follows:

α

α

α

α

α

α

j
T

j
T

j
E

j
T

j
E

j
T

Z

Z

Z

Z

Z
Z

Z

1

2

1

2

2

2

1 50
0 52

2 26

0 03
2 63

3 22

1 03
8 54

3 82

=
+
+

= −
−
+

= −
+
+

.
.

.
,

.
.

.
,

.
.

.
.

    

     

 

(84)

Coefficients βT and α αj
T

j
T

1 2  agree with previously published
results.1,11,13

Next, we discuss the validity of the derived transport
coefficients. As shown earlier, the main contribution to the
second-order heat flux comes from the correction Φ12 to the
symmetric part of the distribution function. The function Φ12
is given in the integral form by Eq. (64) and has the following
asymptotic behavior for small and large velocities:
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Φ12 0
4

x
Z

x
→( ) = −

π
, (85)

Φ12
5 24

45
x Z x→∞( ) = −

π
. (86)

The validity condition of the Chapman�Enskog method10

Φ12
2 2 1v vE T <<  breaks down for

x Z E
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< 2
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π v

v
(87)

and
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>




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
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3
2 5

4 5
v
v

. (88)

According to Eq. (71), the main contribution to the heat flux
comes from the superthermal electrons [which correspond to
the maximum in the function x5/2e−xΦ(x)]. Therefore, the
limit (87) imposes no restrictions on the applicability of the
derived results. The electron distribution function for the
subthermal electrons, nevertheless, is different from the limit
(85). As derived in Refs. 14 and 15, the inverse bremsstrah-
lung heating modifies the distribution of the cold electrons to

f
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0 3 2 3 2
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
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
π

 exp , (89)

where V ZL E T= ( )π 8 2 1 3
 v v  is the Langdon velocity.16 To

check the limitations due to the second condition (88), we find
that the maximum of

x e x e x x ex x x5 2
22

5 2 3 2
12

13 2− − −Φ Φ~ ~

corresponds to xmax � 13/2. This limits the applicability of the
Chapman method to v vE T Z2 2 0 2< . . Even though the modu-
lus of Φ12 becomes larger than unity for large x [see Eq. (88)],
we can show that

f f xE
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2

2 12
int

M exp 1+= ( )
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
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





v

v
Φ (90)

is a good approximation to the symmetric part of the distribu-
tion function even for x → ∞. For such a purpose, we find the
asymptotic behavior of the function that satisfies the following
equation:

∂t f J f f0 0 0= ( )ee , . (91)

We look for a solution of Eq. (91) in the form f0 = AeΨ, where
Ψ = ( ) ( )F gTv v2 2  and A is a normalization constant. The tem-
perature dependence is combined in function F, and velocity
dependence is in g; then, the time derivative of f0 becomes

∂
∂ ν

t T
t Ef f F g
T

T
f F g0 0

2
0

2
= ′ = ′v

v ei

3
, (92)

where we substituted ∂ νt E TT T = ( )v v2 2 3ei  due to the in-
verse bremsstrahlung heating. The electron�electron collision
integral reduces in this case to

J
e

m
F f Iee = ( )[ ]16

3

4

2 2 0
2π ∂
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Λ

v v
v , (93)
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In the limit of v → ∞, I becomes

I g d f g n T  � ′ ( ) ′ ′∫ ′( ) = ′ ( )∞v v v v v v2 4
0 0

2 24 3π ,

and Eq. (91) takes the form
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Next, we make an assumption ′′ << ′g g 2, which will be veri-
fied a posteriori. In this case the solution of Eq. (95) becomes

g
F

F

Z E

T

=
′2

225 2
5

2

2

5π
v

v

v
. (96)

Observe that the condition ′′ << ′g g 2  is satisfied in the limit of
large velocity. The function g, by definition, does not depend
on temperature; this yields for F

′
= ( ) =

F

F
C F

C
T

T
2

2 5 2

7v
v

,
�

,   (97)

where C and �C  are constants. The distribution function f0
depends on the product F gTv v2 2( ) ( ),  which, according to
Eqs. (96) and (97), takes the form

F g
Z

T
E

T

v v
v v

v
2 2

2 5

7
7

225 2
( ) ( ) = −

π
. (98)

Using Eq. (98), the asymptotic limit of the symmetrical part of
the distribution function reduces to

f x Z xE

T
0

2

2
5 21 0 07>>( ) −









  exp    ~ . .

v

v
(99)

The latter equation must be compared to f0
int  in the limit

x → ∞ [see Eq. (90)],

f x Z xE

T
0

2

2
5 21 0 05int    exp    >>( ) −









~ . .

v

v
(100)

Thus, we can conclude that the function in the form (90) is a
good approximation to the distribution function for thermal
and superthermal electrons.

In conclusion, we have derived the transport coefficients,
including the thermal and ponderomotive terms for an arbi-
trary ion charge. The modification of the thermal transport due
to the ponderomotive effects near the critical surface and laser
turning point will be discussed in a forthcoming publication.
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Attaining ignition and high gain in inertial confinement fusion
(ICF) requires that deuterium�tritium (DT)�filled capsules be
spherically imploded to high temperature and density.1�3 �Hot-
spot� ignition, where a capsule is compressed so as to form two
different regions�a small mass of low-density, hot (~10-keV)
fuel at the center surrounded by a larger mass of high-density,
low-temperature fuel�is the leading method envisioned to
achieve this goal. Shock coalescence �ignites� the hot spot, and
a burn wave propagates into the main fuel region. Success
requires a symmetric implosion because significant deviation
from spherical symmetry will result in shock dynamics that do
not lead to ignition. In the direct-drive approach to ICF, where
implosion occurs in response to a large number of high-power,
individual laser beams illuminating the surface of a capsule,
the requirement for spherical implosion imposes severe con-
straints on the uniformity of the laser drive1�3 and on the
sphericity of the capsule.

Illumination nonuniformities, coupled with initial capsule
imperfections, lead to distortions in the compressed capsule.
High-mode-number perturbations (l > 10) are primarily im-
printed by nonuniformities within individual laser beams.4,5

During both the acceleration and deceleration phases, these
perturbations are amplified by Rayleigh�Taylor (RT) instabili-
ties and grow exponentially until reaching saturation at ampli-
tudes of ~ 4R/l2 (R is the capsule radius); thereafter, they
grow linearly.6 Low-mode-number asymmetries (l ≤ 10) result
primarily from either drive-pressure asymmetry, due to
nonuniformity in on-target laser intensity, or capsule fabrica-
tion asymmetry.4,5 These secular modes grow linearly through-
out the entire implosion, largely due to Bell�Plesset (BP)�related
convergence effects.7

A major effort has been made in current ICF research to
reduce target illumination nonuniformity and capsule imper-
fections. Characterization of these efforts requires the mea-
surement of any deviations from spherical symmetry in the
assembled capsule mass, or areal density (ρR).8 Previous work
relied on numerical simulations to predict the conditions under
which asymmetries may develop and on x-ray imaging to

Effects of Nonuniform Illumination on Implosion Asymmetry
in Direct-Drive Inertial Confinement Fusion

provide information about emission symmetry.9 Quantitative
experimental information about ρR asymmetries has not been
available, however, until recent experiments10�11 on OMEGA12

using novel charged-particle spectrometry techniques.13 These
experiments have resulted in the first studies of low-mode-
number ρR asymmetries at the time of fusion burn for direct-
drive spherical implosions (the diagnostic technique is sensitive
to structure with mode numbers l � 5). From these experiments
we conclude that changes in laser-intensity distributions result
in changes in ρR asymmetries, while capsule imperfections do
not seem to be a dominant factor under current conditions.14 In
this article we present new studies showing quantitatively, for
the first time, how the amplitude of ρR asymmetries is directly
correlated with the amplitude of asymmetries in time-aver-
aged, on-target laser intensity I for ablatively driven implo-
sions. The resulting scaling law is based on both theoretical
implications of capsule convergence and experimental data
and has implications for future work on the National Ignition
Facility (NIF)1 as well as on OMEGA. The terminology that
will be used is that �ρR� and �I� are averages over angle, δρR
and δI are deviations from the average at a given angle, and
�δρR� and �δI� are rms averages over angle.

Illumination asymmetries on OMEGA are generated by
several sources. First, there are differences in the time-inte-
grated energies delivered by the 60 individual laser beams,
which can be characterized by an rms beam energy imbalance
σb that tends to be in the range σb � 3%.15 The beams, how-
ever, overlap on the capsule surface, and the overlap reduces
the net energy nonuniformity to a value σe that can be esti-
mated from a typical measured beam profile shape and the
theoretical positions of the individual beam centers: σe ~ 0.8%
to 1.5% rms. The total illumination nonuniformity on the
capsule surface is higher than σe because of other contributing
factors and can be estimated as δ σ σ σ σI I e s p≈ + + +2 2 2

0
2 .

The component σs, typically ~1% rms,16 is due to deviations
of individual beam shape profiles from that assumed in calcu-
lating σe. The component σp (typically ~1.9% rms16) results
from errors in the pointing of individual laser beams, and σ0
(typically ~1% rms16) is an additional contribution from any
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offset of the capsule center from the center of the target
chamber (σ0 is ~0.2 times the offset in µm16). Target offset
results in drive asymmetry with strong l = 1 and 2 modes. This
is demonstrated in Fig. 98.5, which displays a two-dimen-
sional (2-D) simulation from the hydrodynamic code DRACO,
incorporating the measured beam imbalance and other nomi-
nal experimental conditions for an implosion with 50-µm
offset from target chamber center (TCC). The simulation
indicates a strong correlation between drive asymmetry and ρR
asymmetry, which will be addressed empirically below. These
low-mode capsule perturbations cannot be smoothed by the
effects of lateral energy flow in the form of transverse thermal
conduction17 because the scale length of the perturbations is
typically much longer than the separation between the critical
surface and the ablation surface.

The amplitude of asymmetries in ρR is quantitatively cor-
related with the amplitude of asymmetries in time-averaged,
on-target laser intensity I. Both theoretical and experimental
approaches have been used to understand the correlation.
Theoretically, a scaling law for predicting how measured ρR
asymmetries relate to δI I  can be derived from consider-
ations of implosion dynamics, assuming that ρR asymmetries
are seeded by the illumination asymmetries and modified due
to effects of capsule convergence. The growth rates of low-l-
number perturbations due to RT instabilities are small ∝( )l .
To first order, the angular variations in acceleration rates (g)
during both acceleration and deceleration phases of an implo-
sion can be written δ δg g V V≈ imp imp  (Ref. 1), where
Vimp = Vimp(t) is the capsule implosion velocity. Starting with

R R V t0 −( ) ≈ imp imp  and considering implosion dynamics, one
obtains

− ≈ −( )δ δR

R

V

V
Cr

imp

imp

1 . (1)

In this expression, Cr is the convergence ratio

C R R R f Rr ≡ ≈0 0 0ρ ρ ,

where ρ0 and R0 are the initial shell density and radius and
f is the fraction of shell mass not ablated (which can be
estimated from �burnthrough� experiments18). One obtains
− ≈δ δρ ρR R R R1 2 . Vimp is a function of laser inten-
sity on target for direct-drive implosions with

V I m mimp ∝ ( )1 3
0ln ,

where m(m0) is the payload (initial) capsule mass determined
by dm dt I∝ α  (α is a constant).1,19,20 Substituting these
relations into Eq. (1) and keeping terms of first order in
δI I , the resultant scaling has the form

δρ ρ δR R B C I Ir≈ −( )1 ,

where B is a coefficient of the order of 1 that depends weakly
on the payload mass. This result is analogous to the BP effect
for incompressible fluids, which predicts that the growth of
δρR is proportional to capsule convergence and in-flight shell
thickening. The above discussion includes only 1-D effects.

E13048

0.8

0.0

�0.8

�1.6
0 60 120 180

0.4

0.2

0.0

�0.2

�0.4

dr
R

(q
)/

�r
R

�

q (º)

dI
(q

)/
�I

�

100

0

�100

�100 0 100

R
 (
mm

)

Z (mm)

r (g/cc)292 15

q

1.6

(a)

(b)

Figure 98.5
(a) Density contours at a time of peak burn (~1.9 ns) for an implosion of a
capsule offset by 50 µm from TCC, simulated using the 2-D code DRACO

for conditions of shot 26646 (23 kJ of laser energy in a 1-ns square pulse
applied to a capsule with 15 atm of D2 in a 20-µm CH shell). (b) The target
offset results in drive asymmetry with strong l =1 and 2 modes, which
generates a correlated ρR asymmetry.
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Two-dimensional (2-D) effects, such as lateral mass flow, can
modify the convergence-driven asymmetry growth, resulting
in a lower value of B for high-l-number asymmetries with
ratios of perturbation wavelength (λ) to in-flight shell thick-
ness (∆) of the order of 1 or less. To avoid this theoretical
complication, we use experimental data to determine B. In
addition, since initial asymmetries in capsule structure due to
fabrication imperfections (with rms amplitude σC) should
grow in the same manner during convergence, we would
expect that
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R
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2
2

2 2 2
2

δρ

ρ
σ

δ
, (2)

where a is an unknown coefficient. Experimental verification of
the form of this equation, and a value for B, will be found below.

Experiments were conducted on OMEGA with 60 beams of
frequency-tripled (0.35-µm) UV light driving the targets di-
rectly. The total laser energy was ~23 kJ for 1-ns square pulses
or ~18 kJ for shaped pulses. Individual beams were smoothed
using single-color-cycle, 1-THz, 2-D smoothing by spectral
dispersion (SSD) and polarization smoothing (PS) using bire-
fringent wedges.5 The room-temperature capsules had plastic
(CH) shells with 20-µm nominal thickness and were filled with
18 atm of D3He or 15 atm of D2 gas. Each imploded cryogenic
capsule had an 80- to 100-µm D2-ice layer inside an ~5-µm CH
shell.21,22 The primary23 or secondary protons10 generated
from D3He reactions (D+3He → α + p) were measured. These
protons are energetic enough to easily penetrate the CH shell
or D2-ice layer, but they interact strongly enough with the
capsule plasma that their energy loss is a direct measure of ρR
for each spectrometer line of sight:

ρ ρR dE dx dEE
E= ( )∫

−1
0

[see (Ref. 24)]. Because the shell (CH or D2 ice) has a lower
temperature, higher density, and higher mass than the gas, the
measured ρR and ρR asymmetry are dominated by ρRshell.

ρR asymmetry can be seen in sample D3He proton spectra
from a single shot (25221), shown in Fig. 98.6. The measured
mean proton energy losses ∆�Ep� varied from 1.1 to 2.2 MeV,
leading to a variation in ρR from about 35 to 70 mg/cm2. Under
current conditions a number of sources of ρR asymmetry
typically contribute, with no single source dominating. When

an effort is made to maintain the same capsule and laser
conditions from shot to shot, the spatially averaged �ρR�
remains relatively constant, as shown in Fig. 98.7. Although
contiguous implosions often show similar angular variations
in δρR,10,11 there are small, random variations from shot to
shot and a tendency for the angular variations to become
uncorrelated over a long shot series.

E13049

4

0
15

Energy (MeV)

10

Y
ie

ld
 (

M
eV

) 
(×

 1
08

)

8

TIM5

KO3

Figure 98.6
Proton spectra were measured simultaneously at seven different diagnostic
ports for shot 25221. Two of the spectra are shown here, labeled with the
port ID. Substantial asymmetries in the mean downshifted energy indicate
ρR asymmetry.
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(a) Measured ∆�Ep� and inferred ρR for individual shots that were nominally
identical, averaged over different port locations, plotted versus time over a
two-week time interval. (b) Measured ∆�Ep� and inferred ρR at different port
angles (θ,ϕ), averaged over the same shots over a two-week interval. The
�error bars� are not measurement uncertainties but standard deviations of all
measurements represented by a given, plotted average.
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For the shots under study here, the values of δρ ρR R
and δI I  were tabulated and are plotted in Fig. 98.8. The
data were fit to the two-parameter function

C R R A B I Ir −( ) = + ( )−1 1 2 2 2
δρ ρ δ ;

this is equivalent to Eq. (2) with A a C
2 2 2= σ , but A2 can also

be thought of as including the average effect of any other
unknown source of asymmetry not correlated with δI I .
As discussed in the figure caption, the data are well fit by this
function using a value of B ≈ 1/2, indicating that the contribu-
tion of δI I  to δρ ρR R  is

δρ

ρ

δR

R
C

I

Ir≈ −( )1

2
1 . (3)

The value B = 1/2 in Eq. (3) was determined almost
exclusively by the high δI I , high δρ ρR R  data points
in Fig. 98.8. Most of these points correspond to large capsule
offset, where illumination asymmetries are dominated by l =
1 and l = 2; the others correspond to cases with some laser

beams turned off, where δI I  was also dominated by low-
l structure. B may be somewhat smaller for higher modes due
to the effects of lateral mass flow; this will be the subject of
future work. The data used here correspond to capsules with
similar payload masses, but the derivation of Eq. (2) indicates
that (logarithmic) dependence on payload mass should be very
weak.1 In addition, only one fill pressure was used in the room-
temperature capsules (18 atm), but data from other experi-
ments11 with the much lower fill pressure of 4 atm are consistent
with Eq. (3) (although all of these data fall in the low δI I ,
low δρ ρR R  grouping of Fig. 98.8). Of particular interest
is the fact that Eq. (3) seems equally valid for both room-
temperature, CH-shell capsules and cryogenic capsules, even
though these two types of capsules have very different theoreti-
cal susceptibilities to the RT instability.1 The convergence-
driven growth is probably more important than RT effects for
the low modes under study here. (High-mode-number RT
instabilities do have indirect effects on the growth of these low
modes because they cause fuel�shell mix, which decreases Cr
and thereby decreases the growth of δρR.) This is particularly
important for lower fill pressures, where Cr would be expected
to be larger but is not; experiments show that Cr is nearly the
same for 4-atm capsules as for 18-atm capsules.25 The data
demonstrate that the growth of these low-mode asymmetries is
driven primarily by convergence. Whereas different pulse
shapes (adiabats), drive energies, or payload masses may result
in different asymmetry amplitudes, the primary differences are
likely to be due to the size of Cr rather than the size of the
coefficient 1/2 in Eq. (3) or even the breakdown of the scaling
itself. We conclude that the coefficient 1/2 in Eq. (3) may be
slightly different in different ablative-drive contexts, but prob-
ably not by much.

Other evidence supports the scaling of Eq. (3). As shown in
Fig. 98.8, it is compatible with 2-D simulations for two
different shell thicknesses (20 and 26 µm). This shows that the
1-D arguments used to derive Eq. (3), and also the arguments
given for the weak dependence on payload mass, are compat-
ible with 2-D simulations. The weak dependence on payload
mass is experimentally shown through comparisons of the data
shown here with recent results with 26-µm-shell capsules,26

which also indicates that the scaling applies at all angles,
applies for modes l = 1 and l = 2 individually, and applies at
separate times during the implosion.

The scaling of Eq. (3) is useful for estimating behavior in
future experiments. On OMEGA, the performance of cryo-
genic implosions has been shown to be diminished when target
offsets cause low-mode asymmetries.21,22 Another example is
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Plot of y C R Rr≡ −( )−1 1 δρ ρ  versus x I I≡ δ  for the shots described
in the text. The solid line represents a least-squares fit of the data to the
function y x A B x( ) = +2 2 2 , where A = 1.63±0.33 and B = 0.50±0.03; the
reduced χ2 was 1.24. The dotted line represents the contribution of δI I ,
while the dashed line represents the mean contribution of all other sources of
asymmetry. Open diamonds correspond to room-temperature capsules with
plastic shells, while triangles correspond to cryogenic capsules; it is notable
that the two types of data are fairly consistent with each other. Taken
separately, the plastic-shell data give B = 0.41±0.05 and the cryogenic data
give B = 0.55±0.04. In most cases, values of δI I > 3%  were due to offsets
of capsules from the target chamber center. Solid circles (20-µm CH shell)
and a solid square (26-µm CH shell) are from 2-D simulations and show good
agreement with the data and with Eq. (3).
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cone-capsule, fast-ignition experiments on OMEGA,27 where
there is no laser illumination on part of the capsule (essentially
an l = 1 mode). For future indirect-drive experiments at the
NIF, low-mode symmetry is an important design issue.1 Since
very high values of Cr (~30 to 40) are required for ignition,1

Eq. (3) implies that even small amounts of drive asymmetry
can disrupt implosion dynamics. Although the experimental
data used in this article are from direct-drive implosions, the
scaling for indirect drive should theoretically be similar be-
cause the drive pressure scales with I in a similar way;1 direct
experimental evidence is currently being sought in ongoing
indirect-drive experiments at OMEGA.28 Another NIF illumi-
nation scheme under consideration is polar direct drive (PDD),29

in which laser beams arranged in a six-ring configuration
normally used for indirect drive will be used for direct drive;
although this configuration will be optimized as much as
possible, it will involve significant low-mode illumination
asymmetry, and it is important to know how serious that will be
for implosion performance. Equation (3) can be used in these
cases to estimate constraints on δI I  if we know the upper
limit of δρ ρR R  that an imploded capsule can tolerate,
although in some cases the criteria for ignition have been stated
in terms of the symmetry of the hot, compressed core1 rather
than the symmetry of total ρR. Current work is underway to
study the relationship between core symmetry and total ρR
symmetry in indirect-drive implosions.28

In summary, we have performed the first experiments to
systematically study ρR asymmetries and their relationship
with laser illumination asymmetries for direct-drive capsule
implosions on OMEGA. A scaling law relating δρ ρR R  to
δI I  has been found, and it has critical implications for

future work on the National Ignition Facility (NIF) as well as
on OMEGA.
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Introduction
Stimulated brillouin scattering (SBS) is the decay of an inci-
dent (pump) light wave into a frequency-downshifted (Stokes)
light wave and an ion-acoustic (sound) wave.1 It is important
in inertial confinement fusion (ICF) experiments because it
scatters laser light away from the target, which reduces the
laser energy that is available to drive the compression of the
nuclear fuel.2

Unabated SBS results in a complete transfer of energy from
the pump wave to the Stokes (and sound) wave(s); however,
such a transfer is not observed in experiments. Several mecha-
nisms can saturate SBS: The first and most important one is the
Landau damping3 of sound waves. This is a linear phenomenon
and, hence, can be significant even for small sound-wave
amplitudes. Heikkinen,4 Rozmus,5 and Cohen6 have discussed
a wide variety of ion-acoustic nonlinearities. Hydrodynamic
effects such as daughter-wave generation and nonlinear phase
shifts can limit SBS significantly if the sound-wave amplitude
is large enough. Finally, if the Stokes intensity becomes com-
parable to the pump intensity, the effects of pump depletion
become significant. Our goal is to compare these processes in
one- and two-ion plasmas. Our model of sound waves consists
of mass and momentum conservation equations for the ion
fluids (two of each for two-ion plasmas), together with the
inertionless electron-fluid equation and the Poisson equation.
The results of kinetic theory7�9 were used to calculate phenom-
enological damping coefficients. Beating the pump with Stokes
waves creates a low-frequency ponderomotive force that drives
the sound wave. In this article the exact partial differential
equation for a light wave is not solved; instead, an approximate
ordinary differential equation is used for the amplitude of the
ponderomotive force. Neglecting the transient dynamics of the
ponderomotive force is a good approximation because the
group velocity of light is much higher than the group velocity
of sound.

A one-dimensional model is used to simulate backward
scattering. The first part of this article is devoted to SBS in a
one-ion plasma. In this case it is easier to understand underly-

Convective Stimulated Brillouin Scattering (SBS)
in One- and Two-Ion Plasmas

ing physical processes and to find an approximate analytical
solution of the model equations. A numerical solution was
obtained by a code developed at LLE. To verify numerical
results, the model equations were linearized, the exact disper-
sion equation was found, and it was solved numerically. The
solution obtained through this method was compared to a
numerical solution of linearized equations at different values
of pump intensities and damping coefficients. The next step
was to solve numerically the nonlinear equation for ponder-
omotive force along with the linear ion-fluid equation. That
allowed us to quantify the effects of pump depletion. The latter
solution was then compared to a solution of an exact nonlinear
set of equations, which showed the effect of ion-acoustic
nonlinearities. The same steps were repeated to simulate SBS
in two-ion plasmas. The effects of Landau damping, pump
depletion, and ion-acoustic nonlinearities are shown sepa-
rately for fast and slow sound waves. SBS was simulated for
carbon and hydrocarbon plasmas with parameters typical for
experiments on the OMEGA laser system.

SBS in One-Ion Plasmas
1. Model Equations

The equations governing the ion-fluid motion are similar to
the equations for undriven sound waves.10 Specifically, each
ion species is governed by a continuity equation

∂ ∂t i x i in n+ ( ) =v 0 (1)

and a momentum equation

m n Zen pi i t i x i i x x i∂ ∂ ∂ φ ∂+( ) = − −v v , (2)

where ni is the ion (number) density, vi is the ion velocity, mi
is the ion mass, Ze is the ion charge, pi is the ion pressure, and
φ is the electrostatic potential. One can use an adiabatic
equation of state for ions under the assumption that the ion-
acoustic wave phase velocity is much larger than the ion
thermal velocity. It follows from the adiabatic equation of state
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that

∂ ∂x i i i i i x i ip n T n n n n= ( ) ( )3 0 0
2

0 , (3)

where Ti0 is the equilibrium ion temperature and ni0 is the
equilibrium ion density. By substituting Eq. (3) into Eq. (2),
one finds that

m n

Z en n T n n n n

i i t i x i

i x i i i i x i i

∂ ∂

∂ φ ∂

+( )

= − − ( ) ( )

v v

3 0 0 0
2

0 . (4)

The electrostatic potential is governed by the Poisson equation

∂ φ πxx e ie n Zn= −( )4 . (5)

With the ponderomotive term added,1 the electron-fluid mo-
mentum equation is

∂ ∂ φ ∂ ∂t e x e x e e e e ee m ea m c p n mv = − ( ) −⊥
2

2 , (6)

where a⊥ is the vector potential of a light wave. Because the
electron thermal velocity is much higher than the phase veloc-
ity of the sound waves, one can use the isothermal equation of
state

p n Te e e= (7)

for the electron fluid. By substituting Eq. (7) into Eq. (6) and
neglecting electron inertia, one finds that

∂ ∂ φ ∂x e e x e x en n e T e d T= − , (8)

where the ponderomotive potential d a e m ce= ⊥
2 22 . The inte-

gral of Eq. (8) is

n n e T ed Te e e e= −( )0 exp φ , (9)

where ne0 is equilibrium electron density. One can simplify
the manipulation of equations by rewriting them in dimen-
sionless variables. It is clear from Eq. (9) that one should

measure the potentials in units of T ee  and the electron den-
sity in units of ne0. It is clear from Eq. (4) that one should
measure the ion density in units of ni0 (equilibrium ion den-
sity). It follows from Eq. (5) and the normalization of the
potentials that one should measure distance (x) in units of the
electron Debye length λ πDe = ( )T n ee e4 0

2 1 2
. If one mea-

sures time (t) in units of the inverse ion-plasma frequency
ω πpi
− = ( )1

0
2 1 2

4m Zn ei e ,  the corresponding speed unit is the
ion-sound speed c ZT ms e i= ( )1 2.  By making these changes
in Eqs. (1), (4), (5), and (9), one obtains the dimensionless
equations

∂ ∂t i x i iN N V+ ( ) = 0, (10)

∂ ∂ ∂ θ ∂t i x i x i x iV V N N+( ) + + =Φ 0, (11)

∂xx i eN N2 0Φ + − = , (12)

N De − −( ) = exp Φ 0, (13)

where θ = 3T ZTi e .  The dimensionless ponderomotive poten-
tial is given by

D A= ⊥
2 , (14)

where A ea m T ce e⊥ ⊥= ( )2 2 1 2
 is the dimensionless vector

potential of a light wave. Physically A⊥ is the transverse
electron quiver velocity divided by the electron thermal veloc-
ity. Equations (10)�(13) describe a sound wave in plasma. The
equation for the vector potential of a light wave in a plasma was
derived from the Maxwell equations:1

∂ ∂ πtt xx e ec A e n A m2 2 2 24−( ) = −⊥ ⊥ . (15)

The vector potential A⊥ can be written as

A A i t⊥ = −( ) +[ ] exp c.c.ω0 2, (16)

where A is the slowly varying amplitude and ω0 is the pump
frequency. Slowly varying amplitude A satisfies5
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2 0
1 2

2 2
0 0

i n Zm n m A

c m T A n n a An n

c e e i t

e e xx c e e e

( )

+ + =

∂

∂ , (17)

where n m ec e= ( )ω π0
2 24  is the critical density. The slowly

varying amplitude can be expressed as the sum of two compo-
nents:

A A ik x A ik x i t= ( ) + −( )0 0 1 1 1 exp  exp ω , (18)

where A0(1) is the pump (Stokes)-wave amplitude, k0(1) is the
pump (Stokes)-wave number, and ω1 is the frequency differ-
ence between the pump and Stokes waves. If the SBS gain
length is large compared to the wavelengths of pump and
Stokes waves, the envelope approximation is valid. By substi-
tuting Eq. (18) into Eq. (17) and using envelope approxima-
tion, one finds that

∂ ∂

γ ω ω

t x

e

A A ik x

i A N i k k x i t

0 0 0 0

1 1 2 1 2 2

v +( ) ( )

= − +( ) − +( )[ ]

 exp 

 exp , (19)

− +( ) − +( )

= − − +( ) −[ ]

∗ ∗

∗

∂ ∂ ω

γ ω

t x

e

A A ik x i t

i A N i k k x i t

1 0 1 1 1

0 0 2 2 2

v  exp 

 exp , (20)

where Ne  is the first Fourier harmonic of the electron-density
fluctuations, v0 is the group velocity of the pump wave, k2(ω2)
is the wave number (frequency) of the undriven sound wave,
and the coupling constant γ = ( )T k m ce e2

2 .  In the context of
SBS, the plasma response is important only near resonance.
For three-wave processes the resonance conditions are

ω ω1 2 0+ = , (21)

k k k0 1 2 0− − = . (22)

The undriven sound-wave frequency ω2 and wave number k2
satisfy the dispersion relation10

ω θ2 2 2
2 1 2

1= +( ) +[ ]k k . (23)

By using Eqs. (21) and (22), one can reduce Eqs. (19) and
(20) to

∂ ∂ γt x eA A i A N0 0 0 1 2v + = − , (24)

− + = −∗ ∗ ∗∂ ∂ γt x eA A i A N1 0 1 0 2v . (25)

Because the light-wave group velocity is much higher than the
sound-wave group velocity, the intrinsic relaxation time is
much shorter than the SBS gain time. Consequently, the time
derivatives in Eqs. (24) and (25) can be neglected, in which
case the equations reduce to

∂ γx eA i A N0 1 2= − , (26)

∂ γx eA i A N1 0 2∗ ∗= − . (27)

By substituting Eq. (16) into Eq. (14) one finds that

D A i t A i t A= −( ) + ( ) +[ ]∗2
0

2
0

22 2 2 4 exp  exp ω ω . (28)

The first two terms on the right-hand side of Eq. (28) are
nonresonant and can be omitted, thus one obtains

D A= 2 2. (29)

By substituting Eq. (18) into Eq. (29) and neglecting nonresonant
terms, one finds that

D A A ik x i t= −( ) +[ ]∗
0 1 2 2 2 exp c.c.ω . (30)

It follows from Eq. (30) that the Fourier harmonic of the
ponderomotive potential is

D A A= ∗
0 1 . (31)
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By differentiating Eq. (31) and substituting ∂xA0,1 from
Eqs. (26) and (27), one obtains

∂ γx eD i N D C= − +



 4 2

2 1 2
, (32)

where the integration constant C A A D= +( ) −0
2

1
2 2 2

4 .
One can calculate C at the left boundary (x = 0) and express it
in terms of two physical parameters: the pump intensity
I A= ( )0

2
0  and the reflectivity R A A= ( ) ( )1

2
0

2
0 0 :

C I R= −( )[ ]1
2
. (33)

The physical laser intensity I c k al = ( ) ( )0 0
2 8π ,  from which

it follows that the normalized intensity

I I e m T cl e e= ( ) ( )2
0
2 3λ π .

If Il is measured in W/cm2, λ0 is measured in µm, and Te is
measured in keV, then

I I Tl e≈ × −2 10 16
0
2λ . (34)

By adding phenomenological damping terms to Eqs. (11) and
(12) and ponderomotive potential terms to Eqs. (13) and (14),
one obtains

∂ ∂ ζt i x i i iN N V N+ ( ) + −( ) =1 0, (35)

∂ ∂ ∂ θ ∂ ζt i x i x i x i iV V N N V+( ) + + + =Φ 0, (36)

∂ ωxx iN D ik x i t2
2 2 0Φ Φ+ − − −( )[ ]{ } = exp  exp � , (37)

N D ik x i te − − −( )[ ]{ } = exp  exp Φ � 2 2 0ω , (38)

where �(f) denotes the real part of f. Equations (35)�(38),
(32), and (33) form a complete set that self-consistently de-
scribes SBS.

We used the following initial and boundary conditions: the
plasma is undisturbed initially and remains so at the left

boundary (x = 0); SBS is seeded by a finite-amplitude Stokes
wave at the right boundary (x = L). We used A L I1

2 610( ) = − ,
which corresponds to

D L I( ) = −2 310 . (39)

2. Numerical Scheme
Our code uses the MacCormack (MC) method11 to solve the

ion-fluid Eqs. (35) and (36), written in conservation form. MC
is a two-step method: at the first step the values of the ion
density and velocity are predicted using the first-order forward
difference scheme associated with Eqs. (35) and (36):

N N c N V N V t Ni
k

i
k

i i j
k

i i j
k

ij
k

j j
+

+
= − ( ) − ( )[ ]− −( )1

1
1δ ζ , (40)

V V c V N

V N t V

i
k

i
k

i i j

k

i i j

k
i
k

j j

j

+
+

= − + +( )


− + +( ) 

−

1 2 2
1

2 2

2 2

2 2

Φ

Φ

θ

θ δ ζ . (41)

In Eqs. (40) and (41), the subscript j denotes the position jδx,
the superscript k denotes the time kδt, and c t x= δ δ  is the
convection number.

With Ni
k
j
+1 known, the predicted values of the electro-

static potential Φ j
k+1, electron density Ne

k
j
+1 and ponderomotive

potential Dj
k+1 can be determined by solving Eqs. (32), (33),

(37), and (38) iteratively. First, Eq. (37) is solved using the
ponderomotive potential obtained in the previous iteration
(previous time step for the first iteration). Equation (37) is
solved using the Newton iteration method, which was de-
scribed in detail in Ref. 10. The values of the electrostatic
potential obtained from Eq. (37) are used in Eq. (38) to
calculate the electron density Ne. The discrete Fourier trans-
form12 is used to calculate the first harmonic of Ne. Fourier
transform actually gives the values of the first harmonic
averaged over one wavelength; thus, Eq. (32) has to be solved
on a grid whose points are separated by exactly one wave-
length. Linear interpolation was used to calculate the values of
ponderomotive potential between those grid points:

D x D x D x D x x xl r l( ) = ( ) + ( )− ( )[ ] −( )1 2λ , (42)
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where xl and xr are left and right grid points and λ2 is the
sound wavelength. The square of the ponderomotive potential
amplitude in Eq. (32) also has to be averaged over one wave-
length: D D x dxx

x

l

r2 2
2= ( )∫ λ .  By using formula (42) for

D x( )  and integrating, one obtains

D D x D x D x D x

D x D x

l r l r

l r

2 2 2

3

= ( ) + ( ) + ( )[ ] ( )[ ]{

+ ( )[ ] ( )[ ]}

� �

� � , (43)

where �(f) denotes the imaginary part of f.

A straightforward numerical scheme is then used to solve
Eq. (32):

D x D x i N D Cc l c r e p
( ) = ( ) + +






γλ2

2
1 2

4 2 . (44)

The values of D p
2  and Cp obtained in the previous iteration

(previous time step for the first iteration) are used to calculate
Dc  in the current iteration. The values of Dc  are calculated
from right to left because the value of D  at the right boundary
is fixed [Eq. (39)]. The values of Dc  are then used in Eq. (33)
to calculate Rc and Cc. Subsequently, Eq. (37) is solved using
the values of ponderomotive potential obtained in the previous
iteration. These iterations are repeated until the convergence
condition

R R Rc p p−( ) < � (45)

is satisfied. At the second step of the MC method, spatial
derivatives are evaluated using the first-order forward-differ-
ence approximation based on the predicted values of the
density, velocity, and electrostatic potential. Corrected values
of density and velocity are obtained by averaging the spatial
derivatives calculated at the first and second steps:

N N c N V N V

N V N V

t N N

i
k

i
k

i i j
k

i i j
k

i i j
k

i i j
k

i
k

i
k

j j

j j

+
+

+
−
+

+

= − ( ) − ( )[

+ ( ) − ( ) 


− −( ) + −











1
1

1
1
1

1

2

1 1 2

 

 δ ζ ζ , (46)

V V c V N

V N

V N

V N

t V V

i
k

i
k

i i j

k

i i j

k

i i j

k

i i j

k

i
k

i
k

j j

j j

+

+

+

−

+

+

= − + +( )


− + +( )

+ + +( )

− + +( )

− +





1 2 2

1

2 2

2 2 1

2 2

1

1

1

2 2

2 2

2 2

2 2 2

2

Φ

Φ

Φ

Φ

θ

θ

θ

θ

δ ζ ζ

 

 .. (47)

The iterations described at the first step are repeated at the
second step to calculate the corrected values of the electrostatic
potential Φ j

k+1, electron density Nej
k+1, and ponderomotive

potential amplitude Dj
k+1.  The MC method is of second-order

accuracy in both time and space and is conditionally stable.11

The Courant stability condition for the MC scheme applied to
the sound-wave equations is derived in Ref. 10.

The sound-wave equations are solved on a spatial interval
that is longer than the interaction length of the sound and light
waves. To prevent the reflection of the sound wave from the
right boundary, the spatial interval includes an extra region in
which the sound wave is strongly damped and not driven.

3. Linear Regime of SBS
By linearizing Eqs. (35)�(38), one finds that

∂ ∂ ζt i x i iN V N1 1 1 0( ) ( ) ( )+ + = , (48)

∂ θ∂ ζt i x x i iV N V1 1 1 0( ) ( ) ( )+ ∂ + + =Φ , (49)

∂xx i eN N2 1 1 1 0Φ( ) ( ) ( )+ − = , (50)

N De
1 1 1 0( ) ( ) ( )− + =Φ , (51)

where N Ni i
1 1( ) = − , N Ne e

1 1( ) = − ,  V Vi i
1( ) = ,  Φ(1) = Φ, and

D(1) = D. By substituting

y y x ik x i t1
2 2

( ) = − + −( ) +[ ]� , exp c.c.σ ω
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where σ is the spatial growth rate, and differentiating, one
obtains the linear equations

i N ik Vi iω ζ σ−( ) − −( ) =� � ,0 (52)

i V ik Ni iω ζ σ θ−( ) − −( ) +( ) =� � � ,Φ 0 (53)

ik N Ni e−( ) + − =σ 2 0� � � ,Φ (54)

� � � ,N De − + =Φ 0 (55)

in which ω and k are the frequency and wave number of the
undriven sound wave (the subscript 2 was omitted for sim-
plicity). By solving Eqs. (52)�(55) one finds that

�

� � .

N ik

ik i N D

e

e

−( )

= − −( ) − −( )[ ]{ } +( )

σ

θ σ ω ζ

2

2 21 1  (56)

Linearization of the light-wave equation is equivalent to ne-
glecting pump depletion

∂ γx eD i I N= − 2. (57)

One can rewrite Eq. (57) in terms of �D D x= −( ) exp σ  and
� :N N xe e= −( ) exp σ

� � ,D N i Ie= ( )γ σ2 (58)

It follows from Eqs. (56) and (58) that

1

1 1 1 2

2

2 2

ik

ik i i I

−( )

= − −( ) − −( )[ ]{ } + ( )[ ]

σ

θ σ ω ζ γ σ . (59)

By using the sound-wave dispersion relation (23) and neglect-
ing terms of second and higher order in σ/k and δ/ω, one can
reduce Eq. (59) to

σ γ σ η ζ θσ= − + −( )Ik c4 2 , (60)

where phase velocity c k2 =ω  and η = (1 + k2)2. Equation (60)
is a quadratic equation and can be solved analytically. The
spatial growth rates are given by

σ
η ζ η ζ γ ηθ

ηθ± =
± − +( )[ ]

+( )
c c Ik2

2
2
2 2 1 2

1

2 1
. (61)

By using boundary conditions for the ion density
N(1)(0) = 0, ponderomotive potential D(L) = D0 cos (kx�ωt),
and Eq. (58), one finds that

D D
x x

L L

kx t

=
−( ) − −( )
−( ) − −( )

× −( )

+ + − −

+ + − −
0

exp exp 

exp exp 
 

cos 

σ σ σ σ

σ σ σ σ

ω , (62)

N D k
x x

L L

kx t I

i = + +( ) −( )− −( )
−( ) − −( )

× −( ) ( )

+ −

+ + − −
1 2 10

2 exp  exp 

exp  exp 

  sin 

σ σ

σ σ σ σ

ω γ . (63)

Equation (60) has real solutions for growth rates σ only if

ζ γ ηθ η2
2

2
1> +( ) ( )Ik c . (64)

When the ion-acoustic damping is weak, condition (64) is
violated and there is no physically meaningful solution for σ.
For this case the linear SBS equations predict absolute instabil-
ity.13 There is no steady-state solution of linear SBS equations
in this case. The only saturation mechanisms in the case of
weak ion-acoustic damping are nonlinear effects such as pump
depletion and hydrodynamic nonlinearities. We consider con-
vective SBS with strong ion-acoustic damping. In this case
nonlinear effects can also be important, but even in the linear
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regime SBS can be saturated by damping. For very strong
damping

ζ γ2 >> Ik. (65)

By neglecting the second- and higher-order powers of γ ζIk 2

in the Maclaurin expansion of formula (61), one obtains

σ
η ζ
ηζ

γ
η ζ+ ≈ +

−
c Ik

c
2

21 4
, (66)

σ
γ
η ζ− ≈

Ik

c4 2
. (67)

If condition (65) is satisfied, then σ+ >> σ� and exp(�σ+x)
<< exp(�σ�x). Neglecting exp(�σ+x), one can reduce
Eq. (62) to

D D G L x kx t≈ −( )[ ] −( )0 exp  cos ω , (68)

where G = γIk/4ηc2ζ is the well-known convective growth
rate.

To assess the accuracy of the analytical approximations, we
chose typical parameters and solved Eq. (59) numerically.
There are up to eight solutions for σ, but only two of them have

� �σ σ( ) >> ( )  and are relevant to SBS. For future refer-
ence we will refer to the solution obtained by the method
described above as the combined solution.

We modeled SBS in a carbon plasma (Z = 6) with param-
eters that are typical of ICF experiments on the OMEGA laser
system: λ0 = 0.35 µm, IL = 1015 W/cm2, T Te i = 4,  Te = 1 keV,
and n ne0 0 1cr = . .  We used kinetic theory14 to evaluate the
Landau damping rate

ζ ω
π

=
( )

+( )

×








 +









 −












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





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1

2
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2

1 2 3 2
2
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T
c

T Z

Ts
e

i

e

i
s

e

i
  exp . (69)

For the OMEGA parameters listed above, the Landau damping
rate ζ ω ≈ 3 5. %.

The numerical (steady-state) solution of Eqs. (48)�(51)
and (57) is compared to the analytical and combined solutions
in Fig. 98.9. SBS in carbon plasma was simulated for the
OMEGA-like parameters listed above. The three solutions
agree perfectly. The reflectivity (RN) obtained through direct
numerical solution of Eqs. (48)�(51) and (57) = 20.6%. The
reflectivity (RA,C) obtained through analytical and combined
solution = 20.8%. Relative difference R R RA C N N, . %.−( ) = 0 9
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Figure 98.9
(a) First harmonic of electron density; (b) ponderomotive potential amplitude; (c) Stokes-wave intensity normalized to pump-wave intensity versus distance
for steady state of SBS. Solutions of linearized equations [(48)�(51), (57)] describing SBS obtained through different methods are compared. Dotted lines
represent numerical solution. Dashed lines represent combined solution obtained by numerical solution of Eq. (59). Solid lines represent analytical solution.
All three solutions are indistinguishable. Simulation parameters are λ0 = 0.35 µm, IL = 1015 W/cm2, T Te i = 4,  Te = 1 keV, and n ne0 0 1cr = . .
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4. Nonlinear Saturation
Convective SBS can be significantly reduced by nonlinear

effects when the reflectivity is big enough. Pump depletion can
be taken into account by solving the nonlinear light-wave
equations (32) and (33). The effects of hydrodynamic non-
linearities can be determined by solving the nonlinear ion-fluid
and Poisson equations (35)�(38). Different effects such as
nonlinear phase shift15 and generation of higher-order ion-
wave harmonics of sound wave4,5,16 were studied analytically.
Our goal is to compare the effects of pump depletion and
hydrodynamic nonlinearities on the saturation of SBS at
OMEGA-like parameters. To separate the effects of pump
depletion and hydrodynamic nonlinearities we numerically
solved the nonlinear light-wave equations coupled with the
linear sound-wave equations (48)�(51). This partially nonlin-
ear solution was compared to the linear solution, based on
Eqs. (48)�(51) and (57), and to the numerically obtained fully
nonlinear solution, based on Eqs. (32), (33), and (35)�(38). All
three solutions are shown in Figs. 98.10 and 98.11. Simulation
parameters are the same as those used in the previous section.

Steady-state reflectivities are as follows: linear reflectivity
RLN = 20.6%, partially nonlinear reflectivity RPN = 7.8%, fully
nonlinear reflectivity RFN = 6.3%. Pump depletion reduces
reflectivity by 60%. Ion-acoustic nonlinearities reduce reflec-
tivity by 20%.

It is straightforward to express the pump intensity in terms
of ponderomotive potential amplitude and constant of integra-
tion C. By using Eq. (31) and the definition of C, one finds that

A C D C0
2 2 1 2

1 24 2= +



 +









 . (70)

To show the effect of pump depletion we plotted the pump
intensity based on the partially nonlinear solution. The pump-
wave intensity normalized to the input pump intensity is
shown as a function of distance in Fig. 98.12. The pump
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Figure 98.10
(a) First harmonic of electron density; (b) ponderomotive potential amplitude; (c) Stokes-wave intensity normalized to pump wave intensity versus distance
for steady state of SBS. Dotted lines represent numerical solution of linearized equations (48)�(51) and (57). Dashed lines represent numerical solution of
partially nonlinear equations (32), (33), and (48)�(51). Solid lines represent numerical solution of fully nonlinear equations (32), (33), and (35)�(38). Simulation
parameters are the same as in Fig. 98.9.
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Figure 98.11
Reflectivities versus time. Dotted line represents numerical solution of
linearized equations (48)�(51) and (57). Dashed line represents numerical
solution of partially nonlinear equations (32), (33), and (48)�(51). Solid line
represents numerical solution of fully nonlinear equations (32), (33), and
(35)�(38). Simulation parameters are the same as in Fig. 98.9.
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intensity decreases on a scale length of several wavelengths.
As one would expect, output pump intensity

A L I R A L I0
2

1
21( ) = − + ( )PN .

To show the higher-order harmonic generation, we plotted
the discrete Fourier spectra of the electron density near its
maximum. The absolute values of the harmonic amplitudes are
shown in Fig. 98.13. The second and third harmonics can have
significant amplitudes, whereas the fourth and higher harmon-
ics are negligibly small.

SBS in Two-Ion Plasmas
1. Model Equations

The equations governing the ion-fluid motion are the same
as those for undriven sound waves.17 For each ion species s,
the mass and momentum conservation equations are

∂ ∂t s x s sn n+ ( ) =v 0, (71)

m n Z en ps s t s x s s s x x s∂ ∂ ∂ φ ∂+( ) + − =v v 0, (72)

where ns is the ion density, vs is the ion velocity, ms is the ion
mass, Zse is the ion charge, ps is the ion pressure, and φ is the
electrostatic potential. A detailed comparison of fluid and
kinetic models of sound waves in two-ion plasmas is described
in Ref. 9. In particular it shows that a fluid model with self-
consistent values of adiabatic exponents approximates the
kinetic phase velocities of the sound waves with an accuracy
close to the accuracy of the fluid model with adiabatic expo-
nents equal to 3 for both ion species. If one assumes adiabatic
exponents equal to 3 for both ion species, one finds that

∂ ∂x s s s s s x s sp n T n n n n= ( ) ( )3 0 0 0
2

0 , (73)

where Ts0 is the equilibrium ion temperature and ns0 is the
equilibrium ion density. One can easily modify Eq. (73) for a
polytropic equation of state. By substituting Eq. (73) into
Eq. (72), one finds that

m n

Z en n T n n n n

s s t s x s

s s x s s s s x s s

∂ ∂

∂ φ ∂

+( )

+ ( ) ( ) =

v v

 3 00 0 0
2

0 . (74)

The evolution of the electrostatic potential is governed by
the Poisson equation

∂ φ πxx e s s
s

e n Z n= −








∑4 . (75)

One can simplify the manipulation of these equations by
normalizing ns to ns0, ne to ne0, and us to the sound speed of
a reference species r. By rewriting Eqs. (71), (74), and (75) in
the dimensionless form and adding phenomenological damp-
ing terms, one obtains
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Figure 98.12
Pump-wave intensity normalized to input pump intensity versus distance for
steady state of SBS. Simulation parameters are the same as in Fig. 98.9.
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∂ ∂ ζt s x s s sN N V N+ ( ) + −( ) =1 0, (76)

∂ ∂ β ∂ θ ∂ ζt s x s s x s s x s iV V N N V+( ) + + + =Φ 0, (77)

∂ αxx e s s
s

N N2 0Φ− + =∑ , (78)

whereθs s r e r sT Z T m m= 3 , αs s s eZ n n= 0 0 is the ion charge-
to-density ratio, and βs s r r sZ m Z m=  is the ion charge-to-
mass ratio. Distance is measured in units of the electron-Debye
length λ πD = ( )T e ne e4 2

0
1 2

,  and time is measured in units of
the reference ion-plasma period 1 4 2

0
1 2

ω πpi = ( )m Z e nr r e .
The equations for the electron density and ponderomotive
potential amplitude are the same as those for the one-ion case:
Eqs. (32), (33), and (38). We used the same initial and boundary
conditions as in the one-ion case.

2. Numerical Scheme
A modified version of the numerical scheme described in

the one-ion section was used to simulate SBS in two-ion
plasmas. The mass- and momentum-conservation equations
for each ion species are solved to evaluate the density Ns and
velocity Vs of each of the ion fluids. Next, the Poisson equation
(78) with a weighted sum of the light- and heavy-ion charge
densities is used to calculate the electrostatic potential Φ.
Equations (78), (33), (37), and (38) are solved using the
iterative procedure described in the one-ion section. The Cou-
rant stability condition for the MC scheme applied to the
sound-wave equation in two-ion plasmas is given in Ref. 17.

3. Linear Regime of SBS
By linearizing Eqs. (76)�(78), one finds that

∂ ∂ ζt s x s sN V N1 1 1 0( ) ( ) ( )+ + = , (79)

∂ β ∂ θ ∂ ζt s s x s x s sV N V1 1 1 0( ) ( ) ( )+ + + =Φ , (80)

∂ αxx s s e
s

N N2 1 1 1 0Φ( ) ( ) ( )+ − =∑ . (81)

By substituting y y x ik x i t c c1
2 2

( ) = − + −( )−[ ]� . . exp σ ω  into
Eqs. (79)�(81) and differentiating, one obtains the linear alge-
braic equations

i N ik Vs sω ζ σ−( ) − −( ) =� � ,0 (82)

i V ik Ns s s sω ζ σ β θ−( ) − −( ) +( ) =� � � ,Φ 0 (83)

ik N Ns s e
s

−( ) + − =∑σ α2 0� � � .Φ (84)

The undriven sound-wave frequency ω and wave number k
satisfy the dispersion relation17

1 2 2 2 2+ = −( )∑k k ks s s
s

α β ω θ . (85)

The analysis of an undriven sound wave in two-ion plasmas
was described in detail in Ref. 17. Two types of sound waves
exist in such plasmas: a fast wave (fa), with phase speed in the
range

c lfa
2 >θ 2, (86)

and a slow wave (sl), with phase speed in the range

θ θh lc2 2 2< <sl , (87)

where the indices l and h denote the lighter and heavier ions,
respectively. Equation (85) is biquadratic and can be solved
analytically. The frequencies are given by

ω µ θ µ θ

µ θ µ θ µ µ

fa,sl
2

 

= + + +{

± + − −( ) +











k l l h h

l l h h l h

2 2 2

2 2 2 1 2

4 2, (88)

where µ α βs s s k= +( )1 2 .  In Eq. (88) the plus sign is associ-
ated with the fast wave and the minus sign is associated with the
slow wave. Both sound waves can be driven and participate in
SBS. We artificially separated SBS from the fast and the slow
sound waves by choosing the beat frequency of ponderomotive
potential. Fast- or slow-wave SBS is modeled by driving the
sound wave by ponderomotive potential, which has a corre-
sponding frequency.
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By combining Eqs. (82)�(84), (55), and (58), one finds that

1

1 1 2

2

2 2

ik

ik i i Is s s
s

−( )

= − −( ) − −( )[ ]










+ ( )[ ]∑

σ

α β θ σ ω ζ γ σ . (89)

As one should expect, the one-ion limit of Eq. (89) coincides
with Eq. (59). Following the envelope-approximation proce-
dure described in the one-ion section, we simplified Eq. (89) by
substituting the undriven sound-wave frequencies given by
Eq. (88) into Eq. (89) and neglecting second- and higher-order
powers of σ k  and ζ ω .  The result is

σ γ σ α β ζ θ σ θ= − + −( ) −( )∑Ik c cs s
s

s s4 2 2
2 2

. (90)

Equation (90) is quadratic and can be solved analytically. The
growth rates are given by

σ
ζ χ

χ θ

ζ χ γ χ θ

χ θ

1 2
2

2
2 1 2

2 1

1

2 1

,

,

=
+( )

±
( ) − +( )





+( )

∑
∑

∑ ∑

∑

c

c Ik

ss

s ss

ss s ss

s ss

(91)

where χ α β θs s s sc= −( )2
2 2

.

As in the one-ion case, this approximate analytical solution
was compared to the exact numerical solution of Eq. (89). Just
as in the one-ion case, there are up to eight numerical roots of
Eq. (89), but only two of them have � �σ σ( ) >> ( )  and are
relevant to SBS. The solution obtained by the numerical
solution of the analytically derived equation for σ is also
referred to as the combined solution.

The comparison of the approximate analytical solution to
the exact numerical solution of Eq. (89) showed that in the case
of a strong Landau damping ζ ω � 0 1. ,( )  neglecting second-
order powers of ζ ω  leads to a significant error in the growth-
rate values.

We modeled SBS from fast and slow waves in hydrocarbon
(CH) plasma (αl = 1/7, αh = 6/7, βl = 1, βh = 1/2), with
parameters that are typical of ICF experiments on OMEGA:
λ0 = 0.35 µm, IL = 2 × 1015 W/cm2, T T T Te l e h= = 4,  Te =
1 keV, n ne0 0 4cr = . .

A detailed kinetic analysis of sound waves in two-ion
plasmas is described in Refs. 7�9. We used the expression
given in Ref. 9 for the Landau-damping rates:

ζ

ω

π

ν

α β
θ θ

fa sl

fa sl
fa sl

fa sl
 exp 

( )

( )
( )

( )

=
( )
+ +


















+








 −
















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c
k

m Z

m

c

e r

i

s s
s s s

8

1

3 3

2

1 2

2

1 2

3 2 2

, (92)

where ν = 0 for the fast wave and ν α θ= 3 l l  for the slow
wave. Coefficient ν reflects the reduction of the slow-wave
damping rate by the light-ion Debye-screening factor. For the
parameters listed above, the light-ion contribution to the
Landau-damping rate (ζl) dominates for both fast and slow
waves and ζ ωl ≈ 0 13. .  The heavy-ion contribution for the
fast wave is negligibly small ζ ωh ≈( )−10 6  because the phase
velocity of the fast wave is much closer to the thermal velocity
of the light ions than to the thermal velocity of the heavy ions.
The phase velocity of the slow wave lies between the thermal
velocities of the light and heavy ions. For the stated param-
eters, the heavy-ion contribution to the slow-wave Landau-
damping rate is significant ζ ωh ≈( )0 013. ,  but smaller than
the light-ion contribution. The electron contribution (ζe) is
significant for both waves. For the fast wave ζ ωe ≈ 0 01. ,
whereas for the slow wave ζ ωe ≈ 0 005. .  The relative damp-
ing rates of fast and slow waves turn out to be close
ζ ω ζ ωfa fa sl sl ≈ ≈( )0 138 0 148. , . .  By definition the fast-

wave frequency is higher than the slow-wave frequency, so the
absolute damping rate of the fast wave, ζ fa ≈ 0 03. ,  is higher
than the absolute damping rate of the slow wave, ζsl ≈ 0 02. .

The combined solution, which was found by solving
Eq. (89) numerically, was compared to the analytical solution
of the envelope approximation of Eq. (89) and to the direct
numerical stationary solution of Eqs. (79)�(81), (51), and (57).
The numerical, combined, and analytical solutions of these
equations are shown in Figs. 98.14 and 98.15 for fast- and
slow-wave SBS, respectively. SBS in hydrocarbon plasma was
simulated for the OMEGA-like parameters listed above. As in
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Figure 98.14
(a) First harmonic of electron density; (b) ponderomotive potential ampli-
tude; (c) Stokes-wave intensity normalized to pump-wave intensity versus
distance for steady state of fast-wave SBS. Solutions of linearized equations
(51), (57), and (79)�(81) obtained through different methods are compared.
Dotted lines represent numerical solution. Dashed lines represent combined
solution obtained by numerical solution of Eq. (89). Solid lines represent
analytical solution. Numerical and combined solutions are indistinguishable.
Simulation parameters are λ0 = 0.35 µm, IL = 2 × 1015 W/cm2,
T T T Te l e h= = 4,  Te = 1 keV, and n ne0 0 4cr = . .

10�6

20000

x
TC6557

60004000 8000

10�5

10�4

10�3

10�1

10�2

0.000

0.002

(b)

(c)

|a
1(

x)
|2

/|a
0(

0)
|2

0.004

0.006

0.008

0.010

0.012

0.000

0.005

(a)

0.010

0.015

0.020

0.025

0.014

|N
e|

|d
|

Figure 98.15
(a) First harmonic of electron density; (b) ponderomotive potential ampli-
tude; (c) Stokes-wave intensity normalized to pump-wave intensity versus
distance for steady state of slow-wave SBS. Solutions of linearized equations
(51), (57), and (79)�(81) obtained through different methods are compared.
Dotted lines represent numerical solution. Dashed lines represent combined
solution obtained by numerical solution of Eq. (89). Solid lines represent
analytical solution. Numerical and combined solutions for ponderomotive
potential amplitude and Stokes-wave intensity are indistinguishable. Simula-
tion parameters are the same as in Fig. 98.14.
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the one-ion case, the numerical and combined solutions almost
coincide. The fast-wave reflectivity obtained from the numeri-
cal solution is RN = 1.89%. The fast-wave reflectivity obtained
from the combined solution is RC = 1.88%. The relative
difference is R R RC N N−( ) = 0 2. %. Fast-wave reflectivity
obtained from the analytical solution is RA = 1.05%. The
relative difference is R R RA N N−( ) = 44%. The slow-wave
steady-state reflectivity obtained from the numerical solution
is RN = 8.29%. The slow-wave reflectivity obtained from the
combined solution is RC = 8.27%. The relative difference is

R R RC N N−( ) = 0 25. %. Slow-wave reflectivity obtained
from the analytical solution is RA = 4.88%. The relative
difference is R R RA N N−( ) = 41%. For both types of SBS
the agreement between the numerical and combined solutions

again proves the validity of the computational results. Landau-
damping rates in CH plasmas are high for both fast and slow
sound waves ζ ω   � 0 14. ,( )  which explains why analytical
approximations are inaccurate in both cases. For the stated
parameters, the Landau damping of the fast wave is stronger
than that of the slow wave: ζ ζ ζfa sl sl−( ) ≈ 0 5. .  The SBS
growth rate is inversely proportional to the damping rate. This
fact explains why the fast-wave SBS reflectivity is lower than
the slow-wave SBS reflectivity: R Rfa sl ≈ 0 23. .

The first harmonics of the light- and heavy-ion densities
( Nl  and Nh ) in fast- and slow-wave SBS are shown in
Figs. 98.16 and 98.17. Linear analysis of sound waves in two-
ion plasmas shows that for fast wave 0 1< <N Nh l  and for
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Figure 98.16
(a) First harmonic of light-ion and (b) heavy-ion densities versus distance for steady state of fast-wave SBS. Simulation parameters are the same as in Fig. 98.14.
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slow wave N Nh l < 0. 17 Heavy ions are less mobile than light
ions. Their density and velocity perturbations in the high-
frequency field of the fast sound wave are smaller than the
light-ion perturbations. The negative density ratio is a key
feature of the slow sound wave. In the slow wave, light ions
shield the electrostatic potential of the heavy ions and, hence,
reduce the restoring force. The lower restoring force means
lower frequency. At such low frequencies, heavy-ion perturba-
tions are comparable to the light-ion perturbations.

4. Nonlinear Saturation
Figures 98.18�98.21 show the effects of hydrodynamic

nonlinearities and pump depletion on the saturation of fast-
and slow-wave SBS. The simulation parameters were listed
in Linear Regime of SBS (p. 82). Similar to the one-ion case,
the linear solution based on Eqs. (79)�(81), (51), and (57)
was compared to the partially nonlinear solution based on
Eqs. (79)�(81), (51), (32), and (33) and to the numerically
obtained fully nonlinear solution, based on Eqs. (32), (33), and
(76)�(78). This allowed us to separate the effects of hydrody-
namic nonlinearities and pump depletion.

Steady-state reflectivities of fast-wave SBS are as follows:
linear reflectivity RLN = 1.89%, partially nonlinear reflectivity
RPN = 1.66%, and fully nonlinear reflectivity RFN = 1.6%.
Pump depletion reduces reflectivity by 12%. Ion-acoustic
nonlinearities reduce reflectivity by 3.8%.

Steady-state reflectivities of slow-wave SBS are as follows:
linear reflectivity RLN = 8.29%, partially nonlinear reflectivity
RPN = 5.09%, and fully nonlinear reflectivity RFN = 5.06%.
Pump depletion reduces reflectivity by 39%. Ion-acoustic
nonlinearities reduce reflectivity by 0.6%.

Nonlinear steepening of fast and slow sound waves was
investigated in Ref. 17. In CH plasmas, the fast wave steepens
much more than the slow wave. Wave steepening can be
considered the generation of higher-order harmonics. Stronger
steepening means that the amplitudes of the higher-order
harmonics are bigger. These observations explain the differ-
ence in the effect of hydrodynamic nonlinearities on the sat-
uration of fast- and slow-wave SBS. The reflectivity of slow-
wave SBS is bigger than that of the fast-wave SBS. Conse-
quently, the amplitude of the fast sound wave is smaller than
that of the slow sound wave. On the other hand, if the fast- and
slow-wave amplitudes were comparable, hydrodynamic
nonlinearities would affect the fast-wave SBS much more
than the slow-wave SBS. If the slow-wave reflectivity is much
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Figure 98.18
(a) First harmonic of electron density; (b) ponderomotive potential ampli-
tude; (c) Stokes-wave intensity normalized to pump-wave intensity versus
distance for steady state of fast-wave SBS. Dotted lines represent numerical
solution of linearized equations (51), (57), and (79)�(81). Dashed lines
represent numerical solution of partially nonlinear equations (32), (33), (51),
and (79)�(81). Solid lines represent numerical solution of fully nonlinear
equations (32), (33), and (76)�(78). Simulation parameters are the same as in
Fig. 98.14.
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higher than the fast-wave reflectivity, the slow-wave ampli-
tude is much bigger than the fast-wave amplitude, in which
case the effects of hydrodynamic nonlinearities can be more
important for the slow wave than the fast wave. For the stated
simulation parameters, the slow-wave reflectivity is not much

higher than the fast-wave reflectivity R Rfa sl ≈ ≈( )1 5%, % .  In
this case, hydrodynamic nonlinearities affect the fast-wave
SBS more strongly than slow-wave SBS. Hydrodynamic
nonlinearities reduce the fast-wave reflectivity by 3.8%, whereas
they only reduce the slow-wave reflectivity by 0.6%

2000

t
TC6561

1000400

0.0025

0.0050

0.0075

0.0100

0.0125

|a
1(

0)
|2

/|a
0(

0)
|2

600 800 1200
0.0000

0.0150

0.0175

Figure 98.19
Reflectivities versus time for fast-wave SBS. Dotted lines represent numeri-
cal solution of linearized equations (51), (57), and (79)�(81). Dashed lines
represent numerical solution of partially nonlinear equations (32), (33), (51),
and (79)�(81). Solid lines represent numerical solution of fully nonlinear
equations (32), (33), and (76)�(78). Simulation parameters are the same as in
Fig. 98.14.
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(a) First harmonic of electron density; (b) ponderomotive potential amplitude; (c) Stokes-wave intensity normalized to pump-wave intensity versus distance
for steady state of slow-wave SBS. Dotted lines represent numerical solution of linearized equations (51), (57), and (79)�(81). Dashed lines represent numerical
solution of partially nonlinear equations (32), (33), (51), and (79)�(81). Solid lines represent numerical solution of fully nonlinear equations (32), (33), and
(76)�(78). Simulation parameters are the same as in Fig. 98.14.
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Figure 98.21
Reflectivities versus time for slow-wave SBS. Dotted lines represent numeri-
cal solution of linearized equations (51), (57), and (79)�(81). Dashed lines
represent numerical solution of partially nonlinear equations (32), (33), (51),
and (79)�(81). Solid lines represent numerical solution of fully nonlinear
equations (32), (33), and (76)�(78). Simulation parameters are the same as in
Fig. 98.14.



CONVECTIVE STIMULATED BRILLOUIN SCATTERING (SBS) IN ONE- AND TWO-ION PLASMAS

88 LLE Review, Volume 98

The pump-wave intensities in fast- and slow-wave SBS are
plotted as functions of distance in Figs. 98.22 and 98.23,
respectively. Pump intensities are normalized to input pump
intensity. The output pump intensity

A L I R A L I0
2

1
21( ) = − + ( )PN .

Light scattering by the slow sound wave decreases the pump
intensity much more than scattering by the fast sound wave
because the reflectivity of slow-wave SBS is higher than that
of fast-wave SBS.

Higher-order harmonic generation is demonstrated by plot-
ting discrete Fourier spectra of electron density near the point
where it has maximal amplitude. The absolute values of the
steady-state harmonics associated with the fast- and slow-
wave SBS are shown in Figs. 98.24 and 98.25, respectively.
The second- and higher-order harmonics are small in both the
fast and slow sound waves because the amplitudes of both
sound waves are small. The higher-order harmonics of fast-
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Figure 98.22
Pump-wave intensity normalized to input pump intensity versus distance
for steady state of fast-wave SBS. Simulation parameters are the same as in
Fig. 98.14.
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Figure 98.23
Fourier spectra of electron density near the point where it has maximal
amplitude for steady state of fast-wave SBS. Simulation parameters are the
same as in Fig. 98.14.
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Pump-wave intensity normalized to input pump intensity versus distance
for steady state of slow-wave SBS. Simulation parameters are the same as in
Fig. 98.14.
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Fourier spectra of electron density near the point where it has maximal
amplitude for steady state of slow-wave SBS. Simulation parameters are the
same as in Fig. 98.14.
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wave SBS are larger than the higher-order harmonics of slow-
wave SBS because in CH plasmas the fast wave steepens much
more than the slow wave. Consequently the effects of hydro-
dynamic nonlinearities on both the fast- and slow-wave SBS
are small. They are noticeable for the fast-wave SBS but
negligible for the slow-wave SBS.

Summary
A fluid model with phenomenological damping terms was

used to study convective SBS in one- and two-ion plasmas. The
Landau-damping rates were evaluated using formulas from
kinetic theory. A fluid code was developed and tested by
comparing its predictions to analytical formulas for SBS in the
linear regime. SBS was simulated in carbon and hydrocarbon
(CH) plasmas with OMEGA-like parameters. Two types of
sound waves (fast and slow) exist in two-ion plasmas, each of
which can participate in SBS. SBS from fast and slow sound
waves were separated by choosing the beat frequency of the
ponderomotive potential. The fast-wave reflectivity is lower
than the slow-wave reflectivity because the Landau damping
of the fast wave is stronger than the Landau damping of the
slow wave. Effects of hydrodynamic nonlinearities and pump
depletion on saturation of SBS in one- and two-ion plasmas
were compared. The pump depletion significantly reduces
reflectivity in one- and two-ion plasmas. The hydrodynamic
nonlinearities are important for the SBS in one-ion carbon
plasmas and noticeable for the fast-wave SBS in two-ion CH
plasmas, but negligible for the slow-wave SBS.
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Introduction
The goal of the direct-drive approach to inertial confinement
fusion (ICF)1,2 is to uniformly implode a spherical target with
deuterium�tritium (DT) fuel using a large number of over-
lapped laser beams. A combination of high temperature and
high areal density (ρR) in the DT fuel at peak compression is
necessary to ignite the target and achieve high gain.1�3 The
most-significant factor that limits the implosion performance
is the unstable growth of target perturbations. As a result of this
growth, the fuel temperature and compression may be reduced,
leading to a reduction in the thermonuclear yield. The target
perturbations in direct-drive ICF include existing imperfec-
tions of the inner and outer target surfaces and are dominated
by modulations seeded (or imprinted) by the spatial laser
nonuniformities;4�29 therefore, understanding and controlling
laser imprinting are crucial to the success of direct-drive ICF.

Spatial modulations in laser intensity are imprinted into the
target in the first few hundred picoseconds of the drive. As the
laser light is applied to the target, the pressure created by the
target ablation launches a shock wave that compresses the
target.30,31 Any nonuniformities in the laser drive modulate
the ablation pressure. The modulations in surface acceleration
provide the seeds for hydrodynamic instabilities. Later, as a
large volume of plasma develops, the laser modulations de-
couple from the target surface, smoothing the ablation pres-
sure. The imprinted front-surface (or ablation-surface) per-
turbations continue to evolve as the shock-driven Richtmyer�
Meshkov (RM) instability causes the modulations to grow; the
ablation stabilizes this growth.18,32 As a result, the ablation-
surface nonuniformities oscillate during the shock propaga-
tion to the rear surface of the target. The amplitude and fre-
quency of these oscillations are defined by the modulation
wavelength, the sound speed, the ablation, and the expanding
(or �blowoff�) plasma velocities.32 Because the shock is
launched by a modulated laser drive, the shock front is also
distorted. The amplitude of this distortion oscillates as it
propagates through the target with a frequency determined
by the modulation wavelength and the drive intensity.30,31

When the shock front reaches the rear surface of the target, it

Imprint Efficiency Measurements in Laser-Driven Plastic Foils
Using Beams with Different Angles of Incidence

sends the rarefaction wave back to the ablation surface; shortly
thereafter, the target starts to accelerate. During the accelera-
tion phase, the ablation-surface modulations grow exponen-
tially due to Rayleigh�Taylor (RT) instability.2,3

A number of techniques have been developed to reduce
laser imprinting in direct-drive ICF facilities. A combination
of distributed phase plates (DPP�s),33 polarization smoothing
(PS),34 and smoothing by spectral dispersion (SSD)35 is em-
ployed on the OMEGA laser.36 Induced spatial incoherence
(ISI)37 is used on the NIKE laser system. Partially coherent
light (PCL)38 in combination with random-phase plates is used
on the GEKKO-XII laser facility. Targets with foam-buffered
layers, high-Z overcoat, and a combination of the two have
been demonstrated to reduce imprinting.5�7,11,16,20,23�25,27�29

The first measurements5 of laser-imprinted modulations
were performed using a side-on geometry, where the diagnos-
tic x rays penetrate a planar target in the direction perpendicu-
lar to its motion. Almost all subsequent imprinting studies were
performed using a face-on geometry where the diagnostic
x rays penetrate the target in the direction along its motion,
allowing more-quantitative measurements of target perturba-
tions. Face-on radiography is sensitive to variations in the
target density thickness, or areal density (ρR), which includes
not only the ablation-front modulations (existing or laser
imprinted), δ ρR tabl ( )[ ] at time t, but also any shock-front
modulation in the bulk of the target, δ ρR tsh ( )[ ] :

δ ρ δ ρ δ ρR t R t R t( )[ ] = ( )[ ] + ( )[ ]abl sh . (1)

Early imprint experiments8�10,12,14,15,17�19 were performed
at or before shock breakout on the rear surface of the target
(before the onset of the RT growth), when the ablation- and
shock-front modulations are of the same order of magnitude,
δ ρ δ ρR t R tabl sh( )[ ] ≅ ( )[ ]. Intended to be measurements of the
ablation-surface imprinted perturbations (initial seed for the
RT instability), the resulting areal-density modulations also
included the shock-front perturbations.30,31 Later experiments
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observed shock-front and ablation-surface evolutions during
shock transit before the beginning of the RT growth.30,31,39�41

To quantify imprinted modulation levels, imprint efficiency
measurements10,14,26 have used the acceleration-phase RT
growth to magnify the ablation-front modulations in order to
separate them from the shock-front modulations. Figure 98.26
(from Ref. 34) schematically presents the idea behind these
experiments using simulations by the 2-D code ORCHID.42

The solid curve shows the evolution of the areal-density
modulation of an initially smooth target driven by a laser
having a single-mode intensity modulation at 60-µm spatial
wavelength, while the dotted curve shows the evolution of the
single-mode, 60-µm-wavelength, preimposed perturbation
driven by a spatially perfect laser. The solid curve starts at zero
and rises as imprinting begins, while the dotted curve starts at
its preimposed level. The RT growth (starting at ~400 ps)
amplifies the imprinted and imposed ablation-front perturba-
tions in the same manner and, when ablation-front modula-
tions become higher than shock-front modulations,
δ ρ δ ρR t R tabl sh( )[ ] > ( )[ ], the areal-density evolutions become
similar (dotted and solid curves are parallel after 0.5 ns). The

equivalent surface amplitude of imprinting at a particular
mode number k is defined by extrapolating (dashed curve) the
temporal evolution of the imprinted modulation (solid curve)
back to t = 0 using the behavior of the preimposed mode (dotted
curve):

η η

δ ρ δ ρ

imp pre

imp pre

k t k t

R k t R k t

, ,

, , ,

=( ) = =( )

× ( )[ ] ( )[ ]{ }

0 0

(2)

where ηpre(k,t = 0) is the initial amplitude of the preimposed
modulation and δ ρR k timp ,( )[ ]  and δ ρR k tpre ,( )[ ] are the mea-
sured areal-density modulations of imprinted and imposed
perturbations during linear RT growth, respectively. This tech-
nique is valid when (1) the amplitudes of imprinted and pre-
imposed modulations are in the linear regime of the RT growth,
and (2) the measurements are taken when the ablation-front
modulations are large enough to dominate the measurements.
The imprint efficiency E(k) was defined10,14 as the initial
amplitude of equivalent surface modulation ηimp(k,t = 0),
normalized to the relative laser modulation δI(k)/I, that pro-
duced it:

E k k t I k I( ) = =( ) ( )[ ]η δimp , .0 (3)

In direct-drive implosions, a spherical shell is illuminated
by a large number of overlapping laser beams. Each beam
diameter is roughly equal to that of the target; therefore,
different parts of the beam irradiate the target at different
angles of incidence: the central part of the beam is nearly
normally incident to the target, while the outer parts of the
beam irradiate the target at oblique angles. As a result it is
important to investigate the effect of the beam angle of inci-
dence on imprint efficiency. Recently, the imprint efficiency
measurements for three different angles of incidence were
performed for the first time in targets and laser intensities
relevant to the spherical implosion program on OMEGA.43

This article presents details of the techniques and analysis of
the imprint efficiency measurements and is considered compli-
mentary to Ref. 43.

Experimental Configuration
Figure 98.27(a) shows schematically the experimental

configuration, previously used in a number of experi-
ments.20�22,26,34 The 20-µm-thick plastic targets were irradi-
ated by 351-nm laser light at ~2 × 1014 W/cm2 using seven
overlapped beams with a 3-ns square pulse shape on the
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Figure 98.26
Definition of the equivalent surface amplitude using an ORCHID simulation
of a single-mode, 60-µm-wavelength, imprinted modulation (solid curve)
calibrated to a preimposed (dotted curve) modulation (from Ref. 34). The
equivalent surface amplitude of imprinting at a particular mode number k is
defined by extrapolating (dashed curve) the temporal evolution of the im-
printed modulation (solid curve) back to t = 0, using the behavior of the
preimposed mode (dotted curve) and Eq. (2).
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OMEGA laser system.36 The imprint efficiencies at 60-µm
spatial wavelength were with and without 0.2-THz SSD.35

Targets with preimposed, single-mode, two-dimensional,
60-µm sinusoidal perturbations were used to determine the
imprint efficiency: one target with 0.125-µm initial amplitude
and the other with 0.05-µm initial amplitude. The temporal
growth of target perturbations was measured using x-ray, face-
on radiography. The targets were backlit with x rays produced
by a uranium backlighter located 9 mm away from the driven
foil and irradiated at ~1 × 1014 W/cm2 using 12 additional
beams. X rays transmitted through the target and a 3-µm-thick
aluminum debris shield (located between the backlighter and
the driven foil) were imaged by the 8-µm pinhole array on a
framing camera filtered with 6 µm of aluminum.20�22 This
yielded the highest sensitivity for the average photon energy of
~1.3 keV. The distance between the target and the pinhole array
was 2.5 cm, and the magnification was 14.4. The framing
camera recorded eight images in each shot with a temporal
resolution of ~80 ps and a spatial resolution in a target plane of
~10 µm.44 The framing camera images were captured on
Kodak T-Max 3200 film, which was digitized with a 20-µm-sq
scanning aperture. The measured target optical depth (which is
proportional to the target areal density) is the natural logarithm
of the intensity-converted images of a target.

Figure 98.27(b) shows the laser-beam configuration. Six
beams (numbers 34, 36, 38, 41, 43, and 49) were incident at 23°
to a target normal, while one beam (number 48) was incident

at 48° to a target normal. The 23° beams had DPP�s33 and PS.34

An equivalent-target-plane image of one such beam is shown
in Fig. 98.28(a). These beams had a broadband spectrum of
modulations with the smallest features having spatial wave-
lengths of ~2.5 µm. Beam 48 [shown in Fig. 98.28(b)], incident
at a more-oblique 48° angle, had 2-D, 60-µm-wavelength
intensity modulations (together with several higher harmon-
ics) to distinguish it from the 23° beams. The beam modula-
tions were oriented along the direction of its propagation, so
the imprinted target modulations had the same wavelengths as
the laser modulations. The 2-D laser modulations were used to
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Figure 98.27
(a) Experimental configuration (from Ref. 22); (b) beam and target configuration. Diagonal 2-D perturbations at 60-µm wavelength come from beam 48 incident
at 48° to a target normal, while 3-D broadband perturbations come primarily from beams 34, 36, 38, 41, 43, and 49 incident at 23° to the target normal. The
target has a horizontal, preimposed, single-mode, 60-µm-wavelength perturbation used for calibration.
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Figure 98.28
Beam images of the (a) 23° beam having 3-D broadband perturbations and
(b) 48° beam having 2-D, 60-µm-wavelength perturbation.
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separate perturbations caused by the 48° beam from the 3-D
broadband modulations caused by the 23° beams in the radio-
gram of the driven target. Figure 98.29(a) shows the profile of
the relative intensity incident on the target (averaged in the
direction along the 2-D perturbations), calculated using mea-
sured beam intensities [Figs. 98.28(a) and 98.28(b)] and taking
into account experimentally measured beam energies, effects
of beam overlap, and obliquity angles. Figure 98.29(b) pre-
sents the Fourier amplitude of this lineout showing the laser
perturbations at 60-µm wavelength (together with the higher
harmonics) clearly distinguishable from the other broadband
laser modulations. The laser modulations were analyzed in
nine different square areas (with a box size of L = 300 µm, the
same size as in the target x-ray radiographs shown later) of
~800-µm laser spots, and it was found that the modulations
were reasonably constant across the laser-spot size. The ampli-
tudes of relative laser modulations at a spatial frequency of
17 mm�1 (corresponding to a spatial wavelength of 60 µm)
were 6.3±0.4% for the two-dimensional modulation (from the
48° beam) and 0.54±0.09% for the broadband modulations
(from the 23° beams), as calculated in the nine different areas.
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Figure 98.29
(a) Profile of the relative intensity incident on the target averaged in the
direction along the 2-D laser perturbations. (b) Fourier amplitude of this
profile showing the laser perturbations at a spatial frequency of 17 mm�1

(corresponding to the 60-µm wavelength) together with the higher harmonics
clearly distinguishable from the other broadband laser modulations.

Experimental Results
Figure 98.30(a) presents one of the eight images of target

optical-depth modulations taken at ~1.9 ns after the beginning
of the laser drive for the shot without SSD. The corresponding
Fourier-space image of the target optical-depth modulations is
shown in Fig. 98.30(b). Two-dimensional perturbations, im-
printed from the 48° beam, are diagonal across the real-space
image; they have distinctive first- and second-harmonic peaks
in the Fourier-space image. The preimposed, 60-µm-wave-
length perturbation is horizontal in the real-space image;
therefore it has two vertical peaks in the Fourier-space image.
The 3-D features in the real-space image are imprinted from
the broadband perturbations of 23° beams; these perturbations
are located in the broad area of the Fourier-space image. The
profiles of the 2-D imprinted and preimposed modulations are
presented in the Fig. 98.31. Figure 98.31(a) shows the optical-
depth profile of the 2-D imprinted modulation averaged along
the modulations, while Fig. 98.31(b) shows the profile of the
2-D preimposed modulation, averaged along the horizontal
direction. The higher optical depth corresponds to thinner
areas of the targets, or bubbles, while the lower optical depth
corresponds to thicker target areas, or spikes. The profile of the
imprinted optical-depth modulation resembles the profiles of
the laser modulation [compare Figs. 98.29(a) and 98.31(a)].
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Figure 98.30
(a) Image of the target optical-depth modulations taken at ~1.9 ns after the
beginning of the laser drive for the shot without SSD. (b) Fourier-space image
of the target optical-depth modulations showing peaks for a diagonal 2-D,
60-µm wavelength and its second-harmonic imprinted modulations, and 2-D,
60-µm-wavelength, preimposed modulations in the vertical direction.

Figure 98.32 summarizes the results of the measured growth
for all 60-µm-wavelength perturbations with imprinted modu-
lations shown in Fig. 98.32(a) and preimposed modulations in
Fig. 98.32(b) for two shots with and without SSD. Two-
dimensional imprinted modulations from the 48° beam are
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shown by the upper data (diamonds) in Fig. 98.32(a), and 3-D
broadband modulations from the 23° beams are shown by the
lower data (squares). The amplitudes of imprinted modula-
tions are separated by about 0.5 ns in shots with and without
SSD [Fig. 98.32(a)]. This is because the SSD reduces the initial
amplitudes of imprinted modulations by a factor of ~2.5, and
it takes longer for the RT growth to bring them to the same
levels as for the shot without SSD. The initial amplitudes of
preimposed modulations were 0.125 µm and 0.05 µm for the
shots without and with SSD, respectively.

To satisfy the conditions for imprint efficiency measure-
ments described in the Introduction, the growth measure-
ments of 60-µm-wavelength perturbations were performed in
the linear regime of RT instability. To confirm that the mea-
sured modulations were below the RT saturation levels,
ablation-front amplitudes η(k,t) were estimated from the mea-
sured optical-depth modulations OD(k,t), the measured
undriven target attenuation length λeff = 10 µm, and the
calculated (1-D hydrocode LILAC)45 target compression

Cp ~ 3, η λk t k t Cp, ,( ) = ( ) ×OD eff . The amplitudes of 2-D,
single-mode perturbations were calculated to be below 1 µm at
all times for both shots (the 2-D saturation amplitude for the
λ = 60-µm wavelength is S2-D = 6 µm), and the amplitudes of
3-D, broadband perturbations were calculated to be below
0.1 µm in the square analysis area with a size of L = 300 µm
[the 3-D saturation amplitude46,21 for the λ = 60-µm wave-
length is S L3

2 22 0 3− = ( ) ≅D mλ π µ. ]. All measurements
were performed 1.0 ns after the beginning of the drive, when
the growth of imprinted and preimposed modulations was
similar. All three types of target modulations (2-D imprinted,
2-D preimposed, and 3-D imprinted) at 60-µm wavelength
grow with similar growth rates for each shot, as shown in
Fig. 98.32. The solid lines in Fig. 98.32 show exponential fits
to the experimental data. The inferred growth rates were
1.7±0.2 ns�1, 1.5±0.2 ns�1, and 1.6±0.2 ns�1 for the 2-D
imprinted, 2-D preimposed, and 3-D imprinted modulations,
respectively, for the shot without SSD. The corresponding
growth rates for the shot with SSD are 1.7±0.3 ns�1, 2.0±
0.3 ns�1, and 2.1±0.3 ns�1.
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The surface equivalent amplitude of an imprinted 2-D,
60-µm-wavelength perturbation from a 48° beam was
ηimp 2-D(t = 0) = 0.16±0.01 µm, from Eq. (2). The initial
modulation amplitude of 2-D preimposed modulation
ηpre 2-D(t = 0) = 0.125 µm, and the ratios of measured optical-
depth modulations at various times,

δ ρ δ ρR k t R k timp 2 D pre 2 D− −( )[ ] ( )[ ], , ,

taken from Figs. 98.32(a) and 98.32(b). The surface equivalent
amplitude of 3-D imprinted, 60-µm-wavelength perturbations
from 23° beams was ηimp 3-D(t = 0) = 0.016±0.001 µm. The
imprint efficiencies at 60-µm wavelength for 48° and 23°
beams were E48° = 2.5±0.2 µm and E23° = 3.0±0.3 µm,
respectively, as calculated using Eq. (3) and relative laser
modulations [δI(k)/I]48° = 6.3±0.4% for the 48° beam and
[δI(k)/I]23° = 0.54±0.04% for the 23° beams at a spatial
wavelength of 60 µm. As shown in Ref. 43, the imprint
efficiency for more-oblique beams is lower because these
beams see an effectively longer length of plasma on the way to
the ablation surface than the less-oblique beams; therefore,
plasma smoothing is more effective for larger-angle-of-inci-
dence beams.43 Figure 98.32(a) shows the effect of SSD on
imprint reduction. The imprinting amplitudes (of 23° and 48°
beams) are reduced by a factor of ~2.5 at a spatial wavelength
of 60 µm.

Conclusions
The first measurements of imprint efficiency for laser

beams incident at two different angles (23° and 48°) to a target
normal have been presented. The measurements were per-
formed at a spatial wavelength of 60 µm with and without
smoothing by spectral dispersion (SSD). The imprinted ampli-
tudes were calibrated with preimposed, 60-µm-wavelength
perturbations during the linear phase of RT growth. The mea-
sured imprint efficiencies at the spatial wavelength of 60 µm
were 2.5±0.2 µm for the beam with a 48° angle of incidence
and 3.0±0.3 µm for the beams with a 23° angle of incidence.
The SSD reduced modulations by a factor of ~2.5 at the same
spatial wavelength.
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A basic problem in plasma physics is the interaction and
energy loss of energetic charged particles in plasmas.1�4 This
problem has traditionally focused on ions (i.e., protons, alphas,
etc.), either in the context of heating and/or ignition in, for
example, inertial confinement fusion (ICF)3�6 or the use of
these particles for diagnosing implosion dynamics.7 More
recently, prompted in part by the concept of fast ignition for
ICF,8 scientists have begun considering energy deposition
from relativistic fast electrons in deuterium�tritium (DT) plas-
mas.8�13 Tabak et al.8 used, for example, the energy deposi-
tion of Berger and Seltzer,14 which is based on the continuous
slowing down of electrons in cold matter. This treatment,
though quite similar to electrons slowing in plasmas, does not
include the effects of scattering. Deutsch et al.9 addressed
this issue by considering the effects of scattering off the
background ions;16,17 they ignored scattering due to back-
ground electrons.

In another important context in ICF, researchers addressed
the issue of fuel preheat due to energetic electrons (~50 to
300 keV),5,18,19 the consequence of which is to elevate the
fuel adiabat to levels that would prohibit ignition. This article
shows that scattering effects could be significant for quantita-
tive evaluations of preheat.

The starting point for these calculations is the relativistic
elastic differential cross sections for electrons scattering off
fully ionized ions of charge Z (Refs. 20�22) and off the
neutralizing bath of electrons,21,23,24 which are approximated
as
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For a hydrogenic plasma (Z = 1) and for γ � 10, ℜ ~ 1,
indicating that the electron component is equally important. As
best we can tell, the electron-scattering component has been
largely ignored since it was typically assumed, usually justifi-
ably, that ion scattering dominates. This will not be the case,
however, for problems discussed here, for relativistic astro-
physical jets,25 or for many of the present high-energy laser�
plasma experiments26 for which Z ~ 1 and γ � 10.

To calculate the effects of multiple scattering, a Boltzmann-
like diffusion equation is used:27
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where f is the angular distribution function of the scattered
electrons, ni is the number density of plasma ions of charge Z,
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the total scattering cross section, where σ σei
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where Pl (cosθ) is a Legendre polynomial. Using orthogonal-
ity and projecting the l = 1 term,
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where �cosθ�, a function of the residual electron energy, is a
measure of the mean deflection resulting from multiple scatter-
ing,29 and relates dE/ds to dE/dx through

dE

dx

dE

ds
= −cos ,θ 1 (7)

where dE/ds is the stopping power along the path while
dE/dx is the linear energy stopping power. In the above,
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where σ1 is the diffusion cross section (or transport cross sec-
tion) that characterizes the loss of directed electron velocity
through scattering.2 Equations (1) and (2) are substituted into
Eq. (9), and, after a standard change of variables, the integra-
tions are taken from bmin

ei  or bmin
ee  to λD, where λD is the Debye
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where the arguments of the Coulomb logarithm are
Λei

D
ei= λ bmin  and Λee

D
ee= λ bmin  (Ref. 29). Since these

Coulomb logarithms are used in this and later calculations,
they are shown in Fig. 98.33.
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The Coulomb logarithms for incident 1-MeV electrons interacting with a DT
plasma (ρ = 300 g/cm3; Te = 5 keV). For the background plasma, the Coulomb
logarithm lnΛp, relevant to plasma transport processes (e.g., electrical and
thermal conductivity), is about 7.

The stopping power in Eq. (6) consists of contributions
from binary interactions with plasma electrons and from plasma
oscillations. The binary contribution is32
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where the differential energy loss cross section is from Møller23
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and ε is the energy transfer in units of γ −( )1 0
2m c . The lower

integration limit reflects the minimum energy transfer that
occurs when an incident electron interacts with a plasma
electron at λD, i.e., ε γ λ γmin = −( )[ ]2 10

2 2r D . The upper limit
occurs for a head-on collision, for which εmax = 0.5.

The contribution from plasma oscillations, which reflects
the response of the plasma to impact parameters larger than
λD,31 is
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where relativistic effects are included. Consequently,
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Figure 98.34 illustrates this relationship [Eq. (6)], where the
incident electron (E0 = 1 MeV) continuously changes direction
as it loses energy. When �cosθ� equals one e-folding, θ ≈ °68
and E E0 0 1≈ . , at which point the incident electron has lost
memory of its initial direction.

We iterate upon this process, important for low-energy
electrons, until the electrons are thermalized with the back-
ground plasma, which has the cumulative effect of bending
the path of the electrons away from their initial direction.
Figure 98.35 illustrates the enhancement of dE/dx for scatter-
ing off ions and for scattering off ions plus electrons.
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The mean deflection angle �cosθ� is plotted against the fraction of the
residual energy in a DT plasma for e→i and for e→i + e scattering (1-MeV
electrons with ρ = 300 g/cm3; Te = 5 keV). When �cosθ� equals one e-folding,
corresponding to θ ≈ °68  and E E0 0 1≈ . , the incident electron has lost
memory of its initial direction.
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This effect is further illustrated in Fig. 98.36, where the
corresponding set of curves for range (R) and penetration

Xp( ) with and without the electron scattering contributions
are shown for electrons with E0 = 0.1�10 MeV.
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where E0 is the initial energy; E1, E2.... correspond to the
electron energies at the first, second.... e-folding of �cosθ� (see
Fig. 98.34); R is the total path length the electron traverses as
it scatters about and eventually thermalizes; and Xp  is the
distance along the initial electron trajectory that it eventually
reaches. Contributions from electron and ion scattering are
shown in Fig. 98.36.

Three other points are worth noting: First, the temperature
and density dependence are weak, i.e., a factor-of-10 reduction
in either temperature or density results in only ~10% reduction
in the penetration. Second, as the initial electron energy de-
creases, the effects of scattering become more pronounced
[Fig. 98.36(c)]�an effect, very similar in nature, that is also
seen in the scattering of energetic electrons in metals.34 Third,
for a given electron energy, scattering effects decrease slightly
as the target plasma temperature decreases, i.e., the path of the
electron straightens slightly as the target plasma temperature
drops. For example, when the target plasma temperature changes
from 5.0 to 0.5 keV (ρ = 300 g/cm3), the ratio R Xp  is
reduced by ~5% for 1-MeV electrons.

By calculating of the penetration as a function of energy
loss, the energy deposition can be evaluated (Fig. 98.37). In
addition to the differences in total penetration with and without
scattering contributions, it is seen that the linear-energy trans-
fer increases near the end of its penetration (i.e., an effective
Bragg peak), an effect that is seen more weakly with just ion
scattering. Such differences may need to be considered in
quantitatively modeling the energy deposition of relativistic
electrons for fast ignition and for critically assessing ignition
requirements.35 It is also interesting, and a consequence of

E13054

0 5 10
1.00.0

0.0 0.5 1.0 0 5 10
0

R
/�X

p�

2.0

Electron energy (MeV)

rR
 (

g/
cm

2 )

0.5

Electron energy (MeV)

(a) (b) (c)

Continuous slowing down
Scattering by ions
Scattering by ions and electrons

0.4

0.3

0.2

0.1

Electron energy (MeV)

1.5

5

4

3

2

1

rR
 (

g/
cm

2 )

Figure 98.36
The range (dotted line) and penetration for (a) 0.1- to 1-MeV electrons and (b) 1- to 10-MeV electrons in a DT plasma (ρ = 300 g/cm3; Te = 5 keV). The penetration
is shown for scattering off ions and for scattering off ions plus electrons. A factor-of-10 reduction in either the temperature or density results in only ~10%
reduction in the penetration. (c) The ratio of range to penetration for 0.1- to 10-MeV electrons. As the initial electron energy decreases, the effects of multiple
scattering become more pronounced, and the penetration is further diminished with respect to the range.



STOPPING OF DIRECTED ENERGETIC ELECTRONS IN HIGH-TEMPERATURE HYDROGENIC PLASMAS

LLE Review, Volume 98 101

selecting 1-MeV electrons [Figs. 98.36 and 98.37], that
the effects of scattering reduce the penetration from 0.54 to
0.41 g/cm2; this latter value is close to the range of 3.5-MeV
alphas, 0.3 g/cm2, which is required for hot-spot ignition in a
10-keV plasma.3�6

Finally, in order to explore the importance of electron-on-
electron multiple scattering in a hydrogenic setting, and since
definitive stopping power experiments in plasmas are ex-
tremely difficult, we propose that experiments be undertaken
in which a monoenergetic electron beam, with energy between
0.1 and 1.0 MeV, scatters off thin layers of either D2 or H2
ice, where the thickness of the ice layer is between ~100 and
1000 µm, the appropriate thickness depending on the exact
electron energy. Although there are differences in the scatter-
ing calculations for cold, condensed hydrogenic matter and a
hydrogenic plasma, there is reason to believe that the relative
importance of the electron-to-electron and the electron-to-ion
multiple scattering terms will be approximately the same for
both states of matter.

Summary
The energy loss and penetration of energetic electrons into

a hydrogenic plasma has been analytically calculated, and the
effect of scattering off ions and electrons is treated from a
unified point of view. In general, scattering enhances the
electron linear-energy transfer along the initial electron direc-
tion and reduces the electron penetration. Energy deposition
increases near the end of its range. These results should have
relevance to �fast ignition� and to fuel preheat in inertial
confinement fusion, specifically to energy deposition calcula-
tions that critically assess quantitative ignition conditions.
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Introduction
Single-photon�counting x-ray CCD (charge-coupled device)
spectrometers are frequently used in ultrashort-pulse laser
experiments, mostly for K-shell spectroscopy.1�3 For single-
photon counting, the incident x-ray flux is attenuated such that
the probability that two x-ray photons hit a single pixel is small.
Consequently, the pixel value of each readout pixel is propor-
tional to the deposited energy from the incident x-ray photon.
If the x-ray energy is not too high (<100 keV), a significant
fraction of the x-ray photons deposit all their energy in one
pixel. In this case, a histogram of the pixel values provides a
good approximation of the incident x-ray spectrum. This
technique has the advantage of requiring almost no alignment
and the potential of providing absolute x-ray flux information.
Consequently single-photon�counting x-ray CCD spectrom-
eters are also used in astronomical satellites,4,5 where an
extensive set of calibration and characterization data exists.
For the satellite data, the low number of incident photons is the
biggest issue, whereas in ultrashort-pulse laser experiments,
photon counts are generally very high. Signal-to-background
issues, especially in a high-energy petawatt environment,
become dominant.3 Shielding strategies against background
x rays must be carefully chosen to obtain high-quality spectra.
In this article, results from a recent experimental campaign at
the petawatt facility of the Rutherford Appleton Laboratory
(RAL) are presented showing successful strategies to improve
the signal-to-background ratio.

Experimental Setup
The single-photon�counting x-ray spectrometer consists of

a Spectral Instruments Series 800 Camera using a 2-k × 2-k-
pixel, back-thinned CCD chip with a pixel size of 13.5 µm.6

The CCD was cooled to �35°C to reduce the dark current, and
the images were recorded with 16-bit resolution.

The camera was mounted 3.8 m from the target outside the
target chamber on a 1-m vacuum tube. Mounting the camera in
air and using thin vacuum windows was not possible because
the x rays of interest�Cu K-shell radiation at ~8 keV�are
strongly absorbed in air. The RAL petawatt target chamber is

Operation of a Single-Photon�Counting X-Ray CCD Camera
Spectrometer in a Petawatt Environment

very well shielded with 10 cm of lead on three sides and on top.
The side where the access doors are located is unshielded but
backed by a curtain shield of 10 cm of lead and 60 cm of
concrete (Fig. 98.38). The CCD camera was shielded against
x rays scattered from structures close to the target with up to
four lead collimators of 10-cm length inside the target chamber
and the vacuum tube (inner shielding). The CCD camera
housing was surrounded by up to 10 cm of lead to shield against
x rays from the sides and the back of the CCD (outer shielding).
A matched K-edge filter was used to attenuate the K-shell
signal to maintain single-photon counting. Figure 98.39 shows
the transmission of the 150 µm Cu filter used for Cu K-shell
spectroscopy. Compared to a simple high-pass filter against the
thermal radiation from the target, a K-edge filter attenuates the
spectrum above the lines of interest, thus improving the signal-
to-background ratio.

The targets were irradiated with 1053-nm pulses from
the RAL Vulcan petawatt laser, which delivers up to ~500 J
in ~1 ps in a 60-cm-diam beam.7,8 These pulses are focused
with an f/3 off-axis parabola to a focal spot of ~10-µm
FWHM. Losses in the compressor and aberrations generally

E12858

Lead

Concrete

X-ray CCD

Laser beam

Target

Figure 98.38
Setup of the single-photon�counting x-ray CCD at the RAL petawatt facility,
showing the target-area shielding and the CCD shielding.
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limit the focusable energy to <50% of the laser energy. Conse-
quently, the maximum intensity on target was estimated to be
~2 × 1020 W/cm2.

Optimizing the Shielding
A series of experiments were conducted to optimize the

inner and outer shields and to assess the relative importance of
the x-ray background from structures close to the target that
reach the CCD from its face and fluorescence and scattered
photons that reach the CCD from the side or back.

Figure 98.40(a) shows the histogram from a 20-µm-
thick Cu target irradiated with an ~250-J, 1-ps pulse, at 1 ×
1020 W/cm2 using 10-cm inner shielding and no outer shield-
ing. Figure 98.40(b) shows the K-shell spectrum after back-
ground subtraction. The energy scale is inferred from the pub-
lished energies of Cu Kα = 8.05 keV and Cu Kβ = 8.90 keV.
The third line visible in the spectrum is identified as the Heα
line of Cu at 8.36 keV.

The high background seen in these experiments distorts
the spectrum and makes it almost impossible to discern the
Cu Kβ line.

Adding 5 cm of lead as outer shielding around the CCD
camera dramatically improves both the background and the
quality of the spectrum as shown in Fig. 98.41. This indicates
that most of the background is coming from either Compton-
scattered primary x rays or x-ray fluorescence in the struc-
tures around the CCD. The spectrum shows the Cu Kβ line

clearly separated, and the Cu Kα and the He-like feature can be
easily distinguished.

Increasing the laser energy by a factor of 2 results in a
dramatically increased background. Even improving the inner
shielding to 40 cm and the outer shielding to 10 cm does not
prevent the background from rising by about a factor of 3 (see
Fig. 98.42). Fortunately in this experiment the x-ray flux also
rose by almost a factor of 3 and the spectrum is still well
resolved. A new, fourth line is seen in the spectrum, which is
identified as Cu Lyα at 8.64 keV.

Summary and Conclusions
Efficient shielding is required to obtain high-quality x-ray

spectra from a single-photon�counting x-ray CCD spectrom-
eter in a petawatt environment. Shielding the direct line of
sight against x rays from structures close to the target was not
sufficient to decrease the background. Only by shielding the

Figure 98.39
A matched K-edge filter was used to improve the signal-to-background ratio
(150 µm Cu for Cu K-shell spectroscopy shown). The positions of the Cu Kα
and Kβ lines are indicated in the graph.
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CCD camera from all sides with 10 cm of lead was it possible
to reduce the background to a level low enough to be able to
obtain high-quality spectra even at 500-J laser energy. Scaling
the shielding to even higher laser energies or intensities could
be difficult given the significant rise in background from
250-J to 500-J energy.
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Introduction
In recent years it has been theoretically shown that the stability
of inertial fusion implosions can be significantly improved by
shaping the entropy inside the shell. The optimum adiabat
shape in the shell consists of a profile that is monotonically
decreasing from the outer to the inner surface. Large values of
the adiabat on the outer shell surface increase the ablation
velocity Va, which follows a power law of the outer-surface
adiabat α out,

Va ~ ,αout
3 5 (1)

while low adiabat values on the inner surface lead to improved
ignition conditions and larger burn fraction. A more-detailed
history and target design implications of adiabat shaping can
be found in the introduction of Ref. 1, which is mostly devoted
to the adiabat shape induced by a strong decaying shock.
Shaping by a decaying shock1,2 requires a very strong prepulse,
followed by a low-intensity foot of the main pulse, to launch a
strong shock, which decays inside the shell shortly after the
prepulse is turned off. The decaying shock (DS) leaves behind
a monotonically decreasing adiabat profile, which follows a
power law of the mass coordinate

α α= 



in

shell
DSm

m

∆
, (2)

where m is the mass calculated from the outer surface, mshell is
the total shell mass, and ∆DS varies between 1.06 and 1.13
depending on the prepulse duration. Two-dimensional simula-
tions2 of all-DT, OMEGA-sized capsule implosions have
confirmed that DS adiabat targets exhibit significantly reduced
Rayleigh�Taylor growth on the ablation surface during the
acceleration phase with respect to the flat-adiabat targets.
Comparisons between flat- and shaped-adiabat targets are
typically carried out by designing the flat- and shaped-adiabat
pulses to generate identical adiabats on the inner shell surface.

Theory of Laser-Induced Adiabat Shaping in Inertial Fusion
Implosions: The Relaxation Method

A different technique aimed at shaping the adiabat is the
so-called shaping by relaxation (or RX shaping) described in
Ref. 3. The relaxation technique uses a less-energetic prepulse
than the DS technique. The RX prepulse is used to launch a
shock that may or may not decay inside the shell. In both cases,
the prepulse is turned off before the prepulse shock reaches
the shell�s inner surface. Since the prepulse is followed by a
complete power shutoff, the outer portion of the shell expands
outward, generating a relaxed density profile, while the prepulse
shock travels inside the shell. The prepulse shock is not
intended to greatly change the shell adiabat even though it may
cause a significant adiabat modification. The main adiabat
shaping occurs later in time when the foot of the main pulse
starts, driving a strong shock up the relaxed density profile.
The main shock first encounters the low-density portion of the
relaxed profile, setting it on a very high adiabat. The adiabat
develops a monotonically decreasing profile as a result of the
increasing pre-shock density. Figure 98.43 shows a plot of the
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Pressure (dashed), density (dot�dashed), and adiabat (solid) profiles gener-
ated by a strong shock supported by constant pressure propagating through a
relaxed density profile.
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pressure, density, and entropy profiles generated by a strong
shock propagating through a relaxed density profile. Observe
that the adiabat profile is strongly shaped with large values on
the outer shell surface and low values on the inner shell surface.
To produce a monotonically decreasing adiabat profile, it is
important to design the laser pulse so that the prepulse and
main shock merge at the inner shell surface. The RX adiabat-
shaping technique can be viewed as a two-step process: the
prepulse and power shutoff are needed to generate the relaxed
density profile, following which the foot of the main pulse
shapes the adiabat.

In this article, a detailed hydrodynamic analysis of the
relaxed profile generation as well as the shock propagation
through these profiles is carried out.

The General Model
The general gasdynamic model governing the hydrody-

namic motion of a compressible gas is greatly simplified by
adopting a Lagrangian frame of reference where the indepen-
dent spatial coordinate is the mass. In planar geometry, the
mass coordinate is defined as the mass per unit area calculated
from the outer shell surface:

m x dxx= ′( ) ′∫ ρ , ,00 (3)

where ρ x,0( )  is the initial density and x  is the initial spatial
location of the fluid elements.

In this coordinate, the outer shell surface is represented by
x = 0  and m = 0. In spherical geometry, Eq. (3) should be
replaced by m r r drr= ′ ′( ) ′∫ 2

0
0ρ , .  For simplicity, we carry out

the calculation for the case of an ideal gas with adiabatic index
γ and neglect convergence effects on the basis that the adiabat
shaping occurs when the inner shell surface has not yet moved
and the initial aspect ratio is sufficiently large that the shell can
be approximated with a uniform slab.

In the Lagrangian frame and away from the shock front, the
planar equations of motion for the shocked material can be
written in the following conservative form:

∂
∂

−
∂
∂

=
u

m t

1
0

ρ
, (4)

∂
∂

+
∂
∂

=
u

t

P

m
0, (5)

p S m= ( )ργ , (6)

where u, P, ρ, and S(m) are the velocity, pressure, density, and
entropy, respectively. The function S(m) is referred to as the
adiabat and depends exclusively on the Lagrangian coordinate.
At the shock front, the physical quantities must satisfy the
Hugoniot conditions, which in the strong shock regime can be
written in the following simple form:

ρ
γ
γ

ρps
sh sh

[ ] =
+
−

[ ]
m m

1

1 0 , (7)

u
m

m
m

ps
sh

pssh
sh

[ ] =
− [ ]
2

1γ ρ

ú
, (8)

ú ,m P
msh ps ps

sh
=

−( ) [ ]γ
ρ

1

2
(9)

where Pps represents the post-shock pressure, ρps is the post-
shock density, ups is the post-shock velocity, and ρ0 is the initial
unshocked density. Here, msh is the mass coordinate corre-
sponding to the shock location. More details on the Lagrangian
model used here can be found in Ref. 1.

The Generation of the Relaxed Profiles
When a square laser prepulse precedes the main laser pulse,

a pressure pulse is applied to the shell�s outer surface, launch-
ing a uniform shock followed by a rarefaction wave, which
causes a relaxation of the pressure and density profiles. Since
the leading edge of the rarefaction wave travels faster than the
shock, it eventually catches the shock unless the shock reaches
the inner shell surface before interacting with the rarefaction
wave. Two different relaxed profiles are generated depending
on whether or not the rarefaction leading edge catches the
prepulse shock inside the shell. If the shock and rarefaction do
not merge in the shell, the resulting relaxed profiles are said to
be of the �first kind� while merging leads to relaxed profiles of
the �second kind.�

It is convenient to define with subscript p the prepulse
quantities, Pp, ρp, Sp, ap, and up, representing the induced
pressure, compressed density, adiabat, sound speed, and flow
velocity while the uniform laser prepulse of duration ∆tp is
applied. Using the prepulse quantities, we define the following
set of dimensionless quantities and coordinates:
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� , � , � ,ρ
ρ
ρ

≡ ≡ ≡
p p p

P
P

P
u

u

a
      (10)

� , , ,S
S

S
z

m

m

t

tp
= = =

∗ ∗
      τ

∆
(11)

where

∆
∆

t
tp

∗ =
−( ) −2 1 1γ γ

, (12)

m t a t Pp p p p∗ ∗ ∗= =∆ ∆ρ γ ρ . (13)

Here ∆t* is the travel time of the rarefaction wave before
catching the shock, and m* is the areal density undertaken by
the rarefaction wave�s leading edge before catching the pre-
pulse shock. Furthermore, τ = 0 is defined as the time when
the laser prepulse is terminated and the rarefaction wave is
launched. It follows that τ = 1 represents the shock�rarefaction
interaction time.

These dimensionless variables can be used to rewrite the
Lagrangian equations of motion in the convenient form

∂
∂

=
∂
∂

−� �
,

u

z

ρ
τ

1
(14)

γ
τ
∂
∂

= −
∂
∂

� �
,

u P

z
(15)

� � � .P S z= ( )ργ (16)

Observe that Eqs. (14)�(16) can be combined into the follow-
ing single equation:

γ
τ ρ

ργ
∂

∂
+
∂

∂
( ) =

2

2

2

2
1

0
�

� � ,
z

S z (17)

which can be solved for �ρ  once �S  is known. There is no
general solution of the equations of motion after the rarefaction
wave is launched; however, one can consider two limiting
cases resulting in two different relaxed profiles. The first is
the case when the rarefaction wave catches the shock at the

shell�s rear surface. This case is characterized by values of
m* = mshell. The second is the case when the rarefaction wave
quickly catches the shock near the outer surface, causing the
shock to decay throughout most of the shell. This case requires
a small m* satisfying m* < mshell. We will consider these two
cases separately.

1. Relaxed Profiles of the First Kind: Rarefaction and
Shock Merge at the Rear Surface of the Shell: m* = mshell

In this case, the relaxed density and pressure profiles are the
ones generated by the rarefaction wave, whose functional
forms can be obtained from Ref. 1 or from most textbooks on
compressible flow. In the mass coordinate, the density profile
can be written in the following simple form:

ρ τ ρ
τ

ργ γ
z

z m

mp p<( ) = 




=










+ +
2

1

2
1

rf
, (18)

where mrf = apρpt represents the trajectory of the rarefac-
tion wave�s leading edge. For z > τ, the density is uniform and
equal to the post-shock density ρ = ρp.

2. Relaxed Profiles of the Second Kind: Rarefaction
Catches the Shock Inside the Shell: m* < mshell

In this case, the derivation of the relaxed profiles is signifi-
cantly more complicated since there is no exact solution of the
equations of motion after the rarefaction wave catches the
prepulse shock. After the rarefaction wave reaches the shock at
z = 1, the latter decays, leaving behind a relaxed profile with
two distinct spatial shapes in the regions 0 < m < m* and
m m ms

p
∗ < < ,  where ms

p  is the location of the prepulse shock.
In the dimensionless variable z m m= ∗ ,  those two regions are
0 < z < 1 and 1 < <z zs

p , where z m ms
p

s
p≡ ∗ .

a.  The region z < 1.  One could speculate that the profiles
in the region 0 < z < 1 have a similar shape to the ones generated
by the rarefaction wave, ρ ~ z2/γ +1; however, this assumption
does not take into account a second profile relaxation occurring
when a sound wave travels backward down the rarefaction-
wave profile right after the rarefaction wave catches the shock.
The solution in the regions 0 < z < 1 must satisfy Eq. (17) and
the boundary conditions at z = 0 and z = 1. At z = 0, the vacuum
boundary condition requires that ρ(z = 0) = 0. At z = 1, both the
pressure and its gradient must be continuous to prevent sepa-
ration of the continuous medium requiring that
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P z P z

dP

dz
z

dP

dz
z

=( ) = =( )

=( ) = =( )

− +

− +

1 1

1 1

, , ,

, , .

τ τ

τ τ

   

(19)

It would be unrealistic to hope that a simple power law in z
would exactly satisfy the equations of motion and the boundary
conditions; however, one could attempt to look for an approxi-
mate solution behaving as a power law of the mass coordinate

� ,ρ ρ τ α≈ ( )z (20)

which, by construction, satisfies the boundary conditions at
z = 0. Substituting Eq. (20) into Eq. (17) with �S = 1 leads to
the following two conditions:

d

d

2

2
1

1 0
τ ρ

α αγ ργ+ −( ) ≈ , (21)

F1
1

2
1α

α γ
( ) ≡

+( )
≈ . (22)

Note that the symbol ≈ has been used to indicate that the
function (20) is meant to represent an approximate rather than
an exact solution. To solve Eq. (21), one needs two initial
conditions for ρ  and d dρ τ  at τ = 1+ just after the rarefaction
wave interacts with the shock. While the initial condition for
the density at z = 1 is trivial,

ρ τ =( ) =+1 1, (23)

the condition on the time derivate at τ = 1+ is rather compli-
cated. The exact derivation of � ,′( )ρ 1 1  is described in Ref. 1 and
leads to Eq. (56) of Ref. 1, which reads as

d

d

ρ
τ

γ

γ
γ

γ
γ

τ







= −
+( )

+
−( )

+
−= +1

6 1

3
2 2 1

1
2

. (24)

It is worth mentioning that the initial condition on the den-
sity spatial profile at τ = 1 requires that the function
� ,ρ τ ρ α=( ) ≈ ( )1 1z z  reproduces the rarefaction-wave solution

� , ,ρ γ1 2 1z z( ) = +  thus requiring that the power index α satis-
fies α γ− +( ) ≈2 1 0.  This condition is identical to Eq. (22)
and does not represent an additional condition. Note that a
simple analytical solution of Eq. (21) is the following power
law:

ρ τ
γ

α γ αγ
τ

γ

γ

( ) =
−( )

+( ) −( )













+

+

2 1

1 1

1
2

1
1

2
1

. (25)

Equation (25) satisfies the initial conditions (23) and (24) only
if the following conditions are met:

F2 2

1
12 1

1 1
1α

γ

α γ αγ

γ
( ) ≡

−( )
+( ) −( )













≈
+

, (26)

F3 2

1
11

3

2 1

1 1

3

2 2 1

1

2
1

α
γ

α γ αγ

γ
γ

γ
γ

γ
( ) ≡

−( )
+( ) −( )













× +
−( )

+
−







 ≈

+

 . (27)

To test Eq. (20) against the remaining boundary conditions
(19) at z = 1, one needs to determine the solution for z > 1
carried out in the next section. In any case, the condition (22)
implies that α γ≈ +( )2 1 ,  indicating that the density profile
shape is little changed by the second relaxation occurring after
the shock�rarefaction merging.

b.  The region                    As mentioned earlier, the shock
decays for z > 1, τ   > 1. The entropy profile left behind by the
decaying shock is calculated in Ref. 1 and approximately
follows a power law of the Lagrangian coordinate m (or z):

� ,S z
z

( )  �
1
δ (28)

where δ � 1.31 when the effects of ablation are neglected
and the spatial range is limited to z < 10. Typically, the range
1 < z < 10 includes most (if not all) of the ICF RX target

1 < <z zs
p .



THEORY OF LASER-INDUCED ADIABAT SHAPING IN INERTIAL FUSION IMPLOSIONS: THE RELAXATION METHOD

110 LLE Review, Volume 98

designs for both OMEGA-like as well as NIF-like capsules.
However, if z > 10, the shock decay becomes self-similar and
the power-law index asymptotically approaches the value δ �
1.275. The residual ablation pressure leads to a somewhat
slower decay and can be accounted for through a lower δ
(approximately 17% lower) as indicated in Ref. 1. In the self-
similar solution, the density is a function of the coordinate

ξ =
z

zs
p , (29)

where zs
p  is the trajectory of the decaying shock, satisfying the

Hugoniot condition

ú .z
z

s
p

s
p

=
−

( )
γ

γ δ
1

2

1
(30)

Equation (30) can be easily integrated with the initial condi-
tion zs

p 1 1( ) = , leading to the following form of the deceler-
ating shock trajectory:

zs
p τ

δ γ
γ

τ
δ

( ) = + +







−
−( )











+
1 1

2

1

2
1

2
2

. (31)

The density �ρ ξ( )  does not follow a power law. Instead it must
satisfy a complicated second-order differential equation de-
rived by substituting Eqs. (16) and (28) into (17), leading to

ξ
ξ

δ
ξ

ξ ρ γ ξ

ρ

ξ

γ

δ
d

d

d

d

d

d
1

2

1 2

1
0

2

2+ +








 +

−
=

�

�
. (32)

Equation (32) cannot be exactly integrated; however, one can
again attempt to look for an approximate solution in the form
of a power law of the self-similar coordinate

� ,ρ ξµ≈ (33)

which approximately satisfies not only Eq. (32) but also the
boundary by conditions at z = 1 [Eqs. (19)] and at the shock
front z zs

p= .  In order for the simple power law (33) to approxi-
mate the solution of Eq. (32), the power index µ must satisfy
the following conditions obtained upon substitution of (33)

into (32):

G1
1

2
1µ

µ γ

δ
( ) ≡

+( )
+

≈ , (34)

G2

1 1
2

2 1
1µ

µ γ
δ

µ

µγ δ µγ δ
( ) ≡

−( ) + −







−( ) − −( )
≈ . (35)

The boundary conditions at the shock front are provided by the
Hugoniot conditions that determine �ρ  and d d�ρ ξ  at ξ = 1.
Note that the density gradient can be obtained from Eqs. (35b)
and (36) of Ref. 1 for ξ = 1, yielding the following condition:

d

d

�
.

ρ
ξ
ξ

δ
γ

=( ) =
+

1
3

1
(36)

While the Hugoniot condition on the density �ρ 1 1( ) =  is trivi-
ally satisfied by � ,ρ ξµ=  the condition on d d�ρ ξ  requires that

G3
1

3
1µ

µ γ

δ
( ) ≡

+( )
≈ . (37)

The next step is to verify that Eq. (33) used for z > 1 satisfies
Eqs. (19) at z = 1. Since the entropy is continuous at z = 1, the
first of Eq. (19) requires that the density be continuous;
therefore � , � , ,ρ τ ρ τ  z z=( ) ≈ =( )− +1 1  yielding

ρ τ
τ

µ( ) ≈
( )[ ]
1

zs
p

. (38)

Then, using the continuity of the density and Eqs. (28) and (33)
into the second of Eq. (19), one finds the condition

H α µ
γα δ
γµ

, .( ) ≡ +
≈1 (39)

The last step is to find the two power indices α and µ in such
a way that all the conditions [Eqs. (22), (26), (27), (34), (35),
(37), and (39)] are met and that Eq. (38) is approximately
satisfied for any time τ limited by zs

p τ( ) ≤10 representing
the range of interest for ICF capsule design.
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c.  Determination of the power indices.  The power indices
α and τ can be determined by plotting the conditions

G G G1 2 31 1 1µ µ µ( ) ≈ ( ) ≈ ( ) ≈, , ,      (40)

F F F1 2 31 1 1α α α( ) ≈ ( ) ≈ ( ) ≈, , ,      (41)

H α µ, ,( ) ≈1 (42)

and determining α and µ so that all such conditions are
approximately satisfied. Figure 98.44 shows the plot of three
functions G1, G2, and G3 that depends exclusively on the
power index µ for a given γ = 5/3 and δ � 1.315. Observe that
all the G-functions exhibit a zero near µ � 1.45, which can be
considered as an approximate solution of all the Eqs. (40).
After determining µ, the F-functions are plotted together with
the function H versus the parameter α (Fig. 98.45), clearly
indicating that α � 0.75 is an approximate solution of all
Eqs. (41) and (42). The last step is to verify that Eq. (38) is
approximately satisfied for any time τ and for zs

p ≤10.  First,
it is easily found from Eq. (31) that the condition zs

p ≤10
requires τ ≤ 61. Second, we plot both sides of Eq. (38) versus
time for τ ≤ 61 (Fig. 98.46) and realize that both functions are
approximately equal over the range of interesting times.
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Figure 98.44
The functions G1(µ) (solid), G2(µ) (dashed), and G3(µ) (dotted) are all
approximately equal to 1 at µ = 1.45.
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Figure 98.45
The functions F1(α) (solid), F2(α) (dashed), F3(α) (dashed�double-dotted),
and H(α,µ = 1.45) (dotted) are all approximately equal to 1 at α = 0.75.
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Figure 98.46
The analytic solution of Eqs. (21), (23), and (24) for ρ τ( )  given by Eq. (25)
(solid) is compared to the approximate solution for ρ τ( )  given by Eq. (38)
using µ = 1.45 (dashed). The plot indicates good agreement between the two
functional forms of ρ τ( ).
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In summary, all the equations of motions and boundary
conditions for τ > 1 are approximately satisfied by simple
power laws of the Lagrangian coordinate z, leading to the
following solutions for γ = 5/3:

ρ ρ
τ

ρ 
rf

z
z m

mp p<( ) ≈ 




=






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1

3 4 3 4

, (43)
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z z
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z

m
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s
p

p
s
p p

s
p

. .

, (44)

where ms
p  represents the trajectory of the prepulse shock

m z ms
p

s
p= ∗  and mrf = apρpt. Here t = 0 represents the end of

the prepulse. This concludes the calculation of the relaxed
profiles. The next step is to determine the adiabat shape
induced by the main shock propagating through the relaxed
profiles of the first and second kind described by Eqs. (18) and
[(43), (44)], respectively.

Main Shock Propagation Through the Relaxed Profiles
Before the prepulse shock reaches the rear surface, the main

shock is launched by the foot of the main laser pulse and
supported by the applied pressure Pf, which is assumed con-
stant during the main shock propagation. The adiabat shaping
occurs when the main shock travels up the relaxed density
profile, shocking material with increasing density to lower and
lower adiabats. The main shock is typically a strong shock in
the sense that the ratio of pressures across the shock front is
much larger than unity. Using the strong-shock form of the
Hugoniot relations leads to a great simplification of the hydro-
dynamic analysis and is often accurate for the main shock
propagation. However, it is important to emphasize that some
of the strong-shock Hugoniot relations are accurately satisfied
only for a very large pressure jump. For instance, the density
jump across a strong shock with Z P P P= −( ) >>2 1 1 1 is

ρ
ρ

γ
γ

γ

γ
2

1
2 2

1

1

4

1

1 1
=

+
−

−
−( )

+ 







Z
O

Z
. (45)

Observe that even for large Z, the first-order corrections can be
significant due to the large coefficient − −( )4 1 2γ .  For in-
stance, in a gas with γ = 5/3, this coefficient is �15 and the
leading order term is 4, thus indicating that the 1/Z correction
is small only when Z >> 15/4. Another implication of a strong

main shock is the fact that the shocked material evolves on the
time scale of its own sound speed, which scales as PM ,  where
PM is the main shock pressure. Instead, the relaxed profiles
evolve on a slower time scale of the order of the prepulse shock
sound speed, which scales as ~ .Pp  It follows that in the limit
of P PM p >> 1, one can neglect the dynamics of the relaxed
profiles during the main shock propagation. In other words,
one can regard the relaxed profiles as frozen in time while the
main shock propagates through. Obviously, the corrections
due to a finite P PM p  may be large and need to be estimated.

For the sake of simplicity, we will first proceed by neglect-
ing the finite main shock strength correction, assume that the
relaxed profiles are frozen, and determine the lowest-order
solution. The finite shock strength effects will be estimated
later as corrections to the lowest-order solution.

Effects of mass ablation and residual ablation pressures,
though important, are also neglected in this article, and the
calculation focuses on the ideal case of a strong shock sup-
ported by a constant applied pressure traveling up a relaxed
density profile described by the power laws (18) or [(43), (44)].

1. Shock Propagation Through a Relaxed Profile
of the First Kind

As indicated earlier in Relaxed Profiles of the First Kind
(p. 108), the density profile generated by a rarefaction wave
before its interaction with the prepulse shock is described by a
simple power law of the areal density ρ

α= ( )m mrf  with
α γ= +( ) =2 1 0 75. .  Here mrf = apρpt is the location of the
rarefaction leading edge. If the main shock is much stronger
than the prepulse shock, then the relaxed profile may be
considered as frozen in time during the fast main shock
propagation. Since both shocks must merge at the shell�s inner
surface, the fast main shock is launched when the prepulse
shock is approaching the inner shell surface. One can there-
fore approximate mrf ≈ mshell to lowest order in the inverse
shock strength.

a.  The approximation of a static relaxed profile.  Introduc-
ing the new variable ζ ≡ ≈m m m mrf shell ,  the relaxed pro-
file can be represented by the simple power law

ρ ρ ζ α
γ

α= p , ,   =
2

+1
(46)

with 0 < ζ < 1. To simplify the analysis, we introduce another
dimensionless variable related to the main shock location:
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ξ
ζ

ζ
= =

m

ms
M

s
M , (47)

where both ms
M  and ζ s

M  represent the main shock location in
their respective coordinates. Obviously, 0 < ξ < 1 with ξ = 1
representing the shock position. The profiles left behind by the
main shock can be written in terms of the variables ζ and ξ
in the following form:

ρ
ρ ζ

ξ ζ

α

γ γα=
( )

=M MS
S

Φ 1 , ,   (48)

P
P

u a
UM

M=
( )

=
( )

Φ ξ

ξ

ζα
, ,   2 (49)

where

ρ ρ γ γM p≡ +( ) −( )1 1 ,

P SM M M= ργ ,

a PM M M≡ γ ρ ,

and Φ(ξ), U(ξ), and SM need to be determined. By inspection
of Eqs. (48) and (49), it is clear that by setting Φ(1) = 1, the
pressure immediately behind the shock is PM. Furthermore,
using the Hugoniot condition for the post-shock velocity, one
can immediately deduce that U 1 2 1( ) = −( )γ γ . Substituting
Eqs. (48) and (49) into the equations of motion and using the
Hugoniot condition for the shock velocity,

ú ,m ps
M

M M s
M=

− ( )γ
ρ ζ

α1

2
(50)

it is straightforward to derive the two equations governing
Φ and U:

ξ
γ
γ ξ

α

ξ
ξ

ξ

γ

α
α−

− + =
−( )

1

2 2
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1

1 2
2d

d

U dU

d

Φ
, (51)

γ γ
ξ

ξ ξ
α−( )

− =−( )1

2

1
01 2 dU

d

d

d Φ
, (52)

which need to be solved with the initial conditions Φ(1) = 1
and U 1 2 1( ) = −( )γ γ . The unknown SM can be determined
by requiring that the solution of Eqs. (51) and (52) reproduces
the applied pressure Pf at m = 0. Using Eq. (49), one finds
the following expression for SM and the pressure behind the
shock PM:

S
P

P PM
f

M
M f=

( )
= ( )

Φ
Φ

0
0

ργ
, .   (53)

Observe that the pressure behind the shock is constant through-
out the shock propagation. An approximate yet quite accurate
solution of Eqs. (51) and (52) can be found by using the
following ansatz:

Φ
Φ

Φ
ξ

ξ
( ) ≈ ( )

+ ( )−[ ]
0

1 0 1 
. (54)

Substituting Eq. (54) into (52) and using the boundary condi-
tion for the velocity at the shock front yields

U ξ
γ γ α

ξα( ) ≈
−( )

−
( )




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


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
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1
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2
1 12

Φ
. (55)

The functions (54) and (55) must approximately satisfy
Eq. (51), which can be rewritten upon substitution of the two
functions as

2
2

0

1 1 0 1

01 2

1

− −
( )




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
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 ≈

− ( )−
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α
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α

γ γ

Φ

Φ

Φ
Φ . (56)

Observe that since α < 2, the left-hand side of Eq. (56) is sin-
gular for ξ → 0 while the right-hand side is regular. It follows
that Eq. (56) can be satisfied only when 2 2 0 0− − ( ) ≈α Φ ,
leading to

Φ 0
2

2

1
1 6( ) ≈

−
=

+
=

α
γ
γ

. . (57)
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The numerical solution of Eqs. (51) and (52) yields Φ(0)
� 1.68 in good agreement with the analytic derivation. Fig-
ure 98.47 compares the numerically derived functions
p ≡ ( ) ( )Φ Φ0 ξ  (representing the pressure profile) and
u U≡ ( )ξ ξα 2  (representing the velocity profile) with the
analytic solutions from Eqs. (54), (57), and (55). Observe that
the pressure increases approximately linearly before the shock,
while the velocity profile is approximately flat. The shock
pressure is amplified about 1.6 to 1.7 times with respect to the
applied pressure. This amplification is due to the slowing
down of the shocked material against the shock front. The
shock-front velocity decreases in time as a power law. It can be
easily derived by first determining the shock trajectory in the
mass coordinate through Eq. (50) and then substituting the
post-shock velocity ups calculated at the shock front [Eq. (49)
at ξ = 1 and m ms

M= ] into the shock relation

U ushock ps= +( )[ ]γ 1 2 .

This leads to the following expression for the shock velocity:

U

a

a t
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M M
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




−( )

γ

γ γ

γ
γ

α ρ
α α

1

2 1

1
2

2
2

2

2
,

(58)

which decreases as 1/t0.6 for α γ= +( ) =2 1 0 75. .

Furthermore, as indicated by Eqs. (48) and (53), the entropy
profile behind the main shock follows a simple power law of
the mass coordinate

S m
P m

m
f

M
( ) =

( ) 





Φ 0

ρ γ

γα
shell , (59)

where the rarefaction leading edge mrf has been taken near the
inner surface at mrf = mshell and α γ= +( )2 1 . Indeed, it is
important to require that the main shock, the rarefaction
leading edge, and the prepulse shock merge at the target�s rear
surface, leading to mrf � mshell � m*. This timing requirement
is discussed in the Introduction (p. 106), where the optimized
adiabat shaping procedure is described. Figure 98.48 shows
the simulated adiabat profile generated by a strong shock
driven by a 26-Mbar applied pressure traveling up a relaxed
target with a density profile represented by the following
power law:

ρ ρ
α ρ

α
α

=
−( )








−

p
px

m

1 1

shell
, (60)

where 0 1< < −( )x m pshell α ρ  is the spatial coordinate. Ob-
serve that the profile in Eq. (60) requires that α < 1 to avoid
singularities at x = 0 (here α = 0.75). Note Eq. (60) can be
easily rewritten in terms of the mass coordinate m leading
to ρ ρ α= ( )p m mshell , which is identical to Eq. (18) with mrf
= mshell. The solid curve of Fig. 98.48 represents the adiabat
from the 1-D simulation, while the dashed curve is obtained
from the analytic theory in Eq. (59). Observe that the two
adiabat profiles are virtually identical, indicating excellent
agreement between theory and simulations.

Figure 98.47
The numerical (solid) and analytic (dashed) solutions of the self-similar
(a) pressure profiles p ξ( ) and (b) density profile ρ ξ( )  are shown to be in
relatively good agreement.
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b.  Corrections due to dynamic relaxed profiles/finite shock
strength.  The analytic theory above has been derived in the
limit of a relaxed profile that is stationary during the shock
propagation. However, the profile varies in time as the leading
edge of the rarefaction wave travels toward the shell�s inner
surface. Because of these changes, the resulting adiabat profile
left behind by the main shock is somewhat shallower than the
one predicted by Eq. (59). One can estimate the effects of
dynamic profiles on the adiabat shape by assuming that the
relaxed profile changes slightly over the main shock propaga-
tion interval. The dynamic corrections to the entropy profiles
can be estimated by determining the entropy at the shock front
located at m ts

M( ):

S m
P

s
M

M

M
( ) =

( )
ps

psρ
γ , (61)

where PM
ps  and ρps

M  are the post-shock pressure and density at
the main shock front, respectively. It is obvious that if one can
rewrite the right-hand side of Eq. (61) as a function of the shock
position, then the entropy profile is given by the RHS with ms

M

replaced by m. The post-shock density in Eq. (61) can be

rewritten in terms of the pre-shock density at the shock front
ρbs

M  including the linear corrections in the inverse shock
strength:

ρ
γ
γ

ρ
γ

γ

γα

ps bs
shell

  M M p

M

s
MP

P

m

m
�

+
−

−
−

























1

1
1

4

12 , (62)

where the post-shock pressure used to calculate the correc-
tion of order P Pp M  has been taken equal to the zeroth-
order solution PM. Because of the large numerical coeffi-
cient 4 12γ γ −( ),  the first-order correction in the inverse
shock strength shown in Eq. (62) needs to be retained. An-
other important correction is in the pre-shock density
ρ ρ α

bs rf= ( )p m m ,  which varies in time due to the evolution
of the rarefaction leading edge mrf, which can be written as

m m a t t tp p s
M

frf shell= − + −( )ρ ∆ , (63)

where ∆ts
M  is the travel time of the main shock through the

shell and tf is the beginning time of the laser foot when the main
shock is launched. Observe that the second term on the right-
hand side represents the correction to mrf and is small as long
as the main shock is strong. This can be quantified by calculat-
ing ∆ts

M  after integrating Eq. (50) and setting mrf � mshell into
the variable ζ. A straightforward calculation yields

∆t
m

as
M

M M
�  shell2

1

2

2

γ
γ α ρ− −

(64)

and t t t m mf s
M

s
M−( ) = ( ) −

∆ shell
1 2α

.  Substituting Eq. (64)
into (63) leads to the following equation for the rarefaction
leading edge in terms of the main shock location:

m m
P

P

m

m
p

M

s
M

rf shell
shell

= −
− +

−










































−

1
2

2

2

1
1

2
2

α
γ

γ

α

. (65)

Observe that the correction to mrf is of the order of P Pp M

as indicated in the introduction of Main Shock Propagation
Through the Relaxed Profiles (p. 112) and can be significant
even for a strong main shock. It follows that the post-shock
density used in Eq. (61) can be rewritten, including the relevant
corrections, in the following form:

50

40

0
0.40.2 0.6

S 
(m

)

m/mshell
TC6547

0.8 1.0

30

20

10

0.0

Figure 98.48
A comparison of the simulated (solid) and analytically calculated [Eq. (59)]
(dashed) adiabat shapes generated by propagating a shock supported by a
constant 26-Mbar pressure through a density profile of the first kind shows
excellent agreement.
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
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
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
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−
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2

2

. (66)

The next step is the calculation of the dynamic correction to the
post-shock pressure in Eq. (62). While the exact calculation of
such corrections can be cumbersome, a fairly good approxima-
tion can be obtained by assuming that the post-main-shock
pressure profile is linear in the mass coordinate:

P P A t
m

m t
f

s
M≈ + ( )

( )













1 , (67)

where A(t) needs to be determined. It is important to notice
that in the static relaxed profile case, A(t) was previously
determined to be approximately constant with A(t) ≈ A0 ≈
α/(2 � α)  It follows that the dynamic corrections will lead to
a change in A(t), which can be rewritten as a small correction
to A0 such as

A t A A t( ) = + ( ) + ⋅ ⋅ ⋅0 δ , (68)

where δA << A0 needs to be determined. An important dy-
namic correction enters the Hugoniot relations for the velocity
jump across the main shock

u u
PM M

M

Mps bs
ps

bs
= +

+
2

1γ ρ
, (69)

where uM
bs  is the pre-shock velocity at the shock front given by

the standard rarefaction-wave solution

u a
m

m
M

p
s
M

bs
rf

=
−









 +

−( )
−

−















−
α
α γ γ γ

α

1

2

1

2

1

1

. (70)

Observe that ubs represents a correction of the order of P Pp M

in the Hugoniot relation [Eq. (69)] and can be evaluated using
the lowest-order form of mrf � mshell. Instead, the pre-shock
density ρ ρ α

bs rf
M

b s
Mm m= ( )  in Eq. (69) needs to include the

lowest-order corrections for mrf given in Eq. (65). Conserva-
tion of momentum requires that the acceleration balances the
pressure gradient at the shock front leading to

∂

∂
= −

∂
∂








u

t

P

m

M

ms
M

ps . (71)

Substituting Eqs. (67)�(70) into (71) yields the following
ordinary differential equation for δA:

d

d
A

P

P
b

Mη
η δ

α
α

γ
γ

γ γ η

α

α

2

2
3
2

2

2

2

1
2 1

−

−

( ) = −
−

×
+

+ +( )








 , (72)

where η ≡ m ms
M

shell .  Equation (72) can be integrated using
the initial condition that δA ms

M =( ) =0 0, leading to the fol-
lowing final form of the post-shock pressure at the shock front:

P P
P

P
M

M
p

M
ps

 

= −
−( )







×
+

+ +( )
















−

1
2

3 2

2

1
2 1

1
2

α
α

γ
γ

γ γ η
α

. (73)

Observe that the corrections due to finite main shock strength
cause the main shock pressure to decrease as the shock propa-
gates through the dynamic relaxed profile. This clearly leads to
a gentler decrease in entropy.

The last step is to substitute Eqs. (66) and (73) into (61) and
derive the final form of the adiabat shape:
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S m S
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m

m
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
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




( )
+
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shell shell

2
1

1

γ
γ

χ

χ
, (74)

where

S c
Pf

in =
−( ) ( )

+( ) −0

2

2 1
0

1 1

1

γ χ

γ γ ρ

γ

γ γ (75)

is the entropy on the inner shell surface, c0 = 1.68/1.6 = 1.05 is
a corrective factor to account for the analytical approximation
used in Eq. (54), and ρ0 is the initial shell density.

The function χ(x) represents the corrections due to the finite
main shock strength

χ
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, (76)

where the relation α γ= +( )2 1  has been used and P Pp f  is
the ratio of the prepulse pressure to the pressure of the foot of
the main pulse. This concludes the analysis of the main shock
propagation through a relaxed profile of the first kind. The next
step is to investigate the main shock propagation through
relaxed profiles of the second kind and determine the resulting
adiabat shape.

2. Shock Propagation Through a Relaxed Profile
of the Second Kind

In the case of a short prepulse, the rarefaction wave catches
the shock at m = m* before the inner surface (m < mshell), and
the shock decays until it reaches the inner surface at m = mshell.

As described in Relaxed Profiles of the Second Kind (p. 108),
the relaxed profile for γ = 5/3 is well-approximated by two
power laws of the mass coordinate: ρ ~ m0.75 for m < m* and
ρ ~ m1.45 for m* < m < mshell. The analysis of the main shock
propagation through such a profile is vastly more complicated
with respect to the case of the single power-law profile dis-
cussed in Shock Propagation Through a Relaxed Profile of
the First Kind (p. 112). An approximate analytic solution can
be found, however, by assuming that the pressure profile
behind the main shock is linear in the mass coordinate. Similar
to the case of profiles of the first kind, we will first consider the
approximation of infinite main shock strength and static re-
laxed profiles. The corrections due to the finite shock strength
and dynamic profiles are estimated a posteriori as small
perturbations of the zeroth-order solution.

a.  The approximation of a strong shock and a static relaxed
profile.  In the static case, the relaxed profile in the region m
< m* is identical to the profile of the first kind, leading to a
pressure profile behind the shock that linearly increases about
60% with respect to the applied foot pressure Pf. Once the main
shock enters into the second region m* < m < mshell, an exact
analytic solution cannot be found. A careful analysis of the
numerical simulation indicates, however, that the pressure
profile behind the shock remains approximately linear in the
mass coordinate. In contrast with the behavior in the first
region, however, the shock-front pressure is not constant while
the pressure at m* varies slightly around the value ωPf with
ω � 1.5 to 1.6 for γ = 5/3. Thus, it makes sense to look for a
solution of the hydrodynamic equation with a linear pressure
profile of the following form:

P m m P D t
m

mps foot>( ) ≈ ( ) + ( ) −






















∗
∗

ω γ 1 1 , (77)

where ω(γ) is a constant that must be chosen to reproduce the
pressure at the time when the main shock reaches m*. Using the
results of the previous section for the main shock propagation
for m < m*, one can conclude that

ω γ
γ
γ

( ) ≈ +1
. (78)

Similar to the analysis in Shock Propagation Through a
Relaxed Profile of the First Kind (p. 112), Eq. (77) can be
substituted into the momentum equation at the shock front
∂ = − ∂( )[ ]t m m

u P
s
Mps ,  where the post-shock velocity at the
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shock front is given by the Hugoniot relation

u PM M
ps ps bs

M= +( )2 1γ ρ

with the pre-shock density at the shock front given by

ρ ρ
µ

bs
shell

M
p

s
Mm

m
=









 , (79)

where the prepulse shock location m p
sh  has been assumed to

have reached the inner shell surface so that m ms
p  shell� .  As in

Shock Propagation Through a Relaxed Profile of the First
Kind (p. 112), uM

ps  and PM
ps  represent the post-shock velocity

and pressure at the main shock front. The resulting shock-front
momentum equation can be simplified by using the main shock
trajectory m ts

M ( )  as the time coordinate and by using the shock
mass velocity ú .m Ps

M M M= +( )γ ρ1 2ps bs  A straightforward
manipulation of the momentum equation leads to the following
simple differential equation for D:

dD

dz
z D

z
D z

s
M s

M

s
M s

M−( ) + − + −( )[ ] =1 3 1 1 0
µ

, (80)

where D D zs
M= [ ] and z m t ms

M
s
M≡ ( ) ∗ .  It is important to

note that the only nonsingular solution of Eq. (80) has the
simple form

D x
x x x x

x
( ) =

−( ) + −( ) −( )− −( )

−( ) −( ) −( )

2 1 3 1 1

2 1 1

2 2

3

µ µ µ

µ µ
. (81)

The pressure at the shock fronts can be determined from
Eq. (77) upon substitution of Eq. (81), leading to

P m P D
m

m

m

m
M

s
M

f
s
M

s
M

ps  ( ) ≈ ( ) +








 −




















∗ ∗

ω γ 1 1 , (82)

representing a growing function of ms
M  reaching the asymp-

totic value of 3.6 for m ms
M >> ∗. The entropy behind the shock

can be easily calculated by substituting the pressure and
density at the shock front into the definition of the entropy:

S m
P m

m
s
M

M
s
M

M
s
M

( ) =
( )

( )[ ]
ps

psρ
γ . (83)

Using Eqs. (77), (81), and (82) into (83) leads to the following
form of the entropy:

S m m m
P

m

m
D

m

m

m

m

f

M
∞

∗ ∗

< ≤( ) =
( )

× 





+








 −






















*

,

shell

shell

ω γ

ργ

γµ
1 1 (84)

where ρ ρ γ γM p= +( ) −( )1 1  and the subscript ∞ indicates
that Eq. (84) is valid only for infinite main shock strength.
Figure 98.49 shows a comparison of the predicted adiabat
profile of Eq. (84) (dashed) with the simulated adiabat profile
(solid) generated by a strong shock driven by a 26-Mbar
applied pressure traveling up a static, relaxed target with a
density profile given by ρ ρ µ α= ( ) ( )∗ ∗M m m m mshell  for
m ≤ m*, and ρ ρ µ= ( )M m mshell  for m* < m ≤ mshell. Here,
m m∗ shell  is chosen to be 0.05. The theory again shows
excellent agreement with the simulation.
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Figure 98.49
A comparison of the simulated (solid) and analytically calculated [Eq. (84)]
(dashed) adiabat shape generated by propagating a shock supported by a
constant 26-Mbar pressure through a density profile of the second kind shows
excellent agreement.
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It is interesting to observe that the linear approximation for
the pressure profile leads to a flat velocity profile as shown by
substituting Eq. (77) into the momentum equation, yielding

u m t u tM, .( ) = ( )ps (85)

The density behind the shock can be determined from the
pressure and the entropy through the relation ρ γ= ( )p S 1 .
Upon substitution of the density, the mass conservation equa-
tion [Eq. (4)] can be solved for the velocity profile, leading to

u m t u G z zM
s
M, , ,( ) = − ( )[ ]ps 1 (86)

where z m m= ∗  and

G z z
dD z

dz

x D x x

D z x

z

x
dx

s
M s

M

s
M

s
M

z

z

s
M

s
M

,

.

( ) =
− ( )

×
−( ) + ( ) −( )[ ]
+ ( ) −( )[ ]

⌠

⌡












+( )

γ
γ

γ

γ γ

µ

1

2

1 1 1

1 1

1

1
 (87)

Observe that the two velocity profiles obtained from the
momentum and mass conservation equations are approxi-
mately equal in magnitude as long as G << 1. The value G
can be estimated after replacing z with ηzs

M  and by plotting
G z zs

M
s
Mη ,( )  for 1 1zs

M < <η  for different values of zs
M .

Figure 98.50 shows the value of G for zs
M  = 2, 5, 10, 20,

indicating that G does not exceed 0.21 for typical values of
zs

M ≤ 20. It follows that the linear pressure profile of Eq. (77),
the flat velocity profile of Eq. (85), and the entropy profile of
Eq. (84) are accurate approximations of the solution to the
hydro equations.

b.  Corrections due to dynamic relaxed profiles/finite shock
strength.  To determine the correction to the adiabat shape due
to the finite shock strength and the dynamic evolution of the
relaxed profile during the main shock propagation, one needs
to calculate the main shock position in terms of the prepulse
shock location. Both the main shock ms

M  and the prepulse
shock positions ms

p  are governed by the Hugoniot relations

ú ,m P
m

m
D z zs

M
f M

s
M

s
p s

M
s
M=

− 







 + ( ) −( )[ ]γ

ρ
µ

1

2
1 1 (88)

ú ,m P
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m
s
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p p
s
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







∗γ
ρ

δ
1

2
(89)

where δ � 1.315. Replacing the time variable with m ts
p ( ) into

Eq. (88) leads to the following algebraic equation relating the
main and the prepulse shock location:

z z
P

P

z z

s
p p

f

s
M

( ) − =
−( )

+ ( )

× ( )− ( )[ ]

β β β
γ

γ ω γ

σ σ

shell

shell 

2 1

1

, (90)

where β δ µ= − +( )2 2, z m ms
p

s
p= ∗ ,  z m mshell shell= ∗ ,

and
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Figure 98.50
Plots of G z zs

M
s
Mη ,( )  for zs

M = 2, 5, 10, 20 (dotted, dashed, dash�dotted, and
solid lines, respectively) show that G does not exceed 0.21 for typical values
of zs

M ≤ 20.
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σ ξ
µ ξ µ ξ

µ µ

µ µ

( ) =
−( ) − −( ) +

−( ) −( )

− −2 1 1

2 1

1 2

. (91)

It is important to recognize that Eq. (90) has been derived
using the condition that z zs

p = shell  when z zs
M = shell .  This is

an essential constraint requiring that both the prepulse and
main shock merge on the shell�s inner surface. Observe that
Eq. (90) can be used to find zs

p  in terms of zs
M . An analytic

form of zs
M  in terms of zs

p  can also be found by approximating
µ � 1.45 and reducing Eq. (90) to a second-order algebraic
equation for zs

M .

Similar to the analysis in Shock Propagation Through a
Relaxed Profile of the First Kind (p. 112), we estimate the
dynamic corrections to the entropy profile by rewriting the
entropy at the main shock front:

S z
z

z

P z t
s
M s

p

s
M

M
s
M

M
( ) =











( )µγ

γρ

ps ,
. (92)

Since we did not find an exact solution of the post-shock
pressure for the static case, it is not worth calculating small
corrections to an already inexact solution. Nevertheless, we
retain the corrections due to the dynamic evolution of the
relaxed profile. These corrections require including the time
dependence of zs

p  in the pre-shock density. We speculate that
the largest corrections to the entropy are likely to come from
such dynamic effects. This consideration is supported by the
large power index µγ � 2.4 for zs

p  in Eq. (92) and the finite
shock strength corrections of the order of P Pp f  in Eq. (92)
for zs

p .  It follows that the dynamic corrections to the entropy
profile can be determined by substituting zs

p  from Eq. (90) into
Eq. (92) and by replacing zs

M  with z m m= ∗ . A straightfor-
ward manipulation leads to the following form of the entropy
profile:

S m S m
m

m

P

P

m

m

m

m

p

f
( ) = ( ) −











−( )
+( ) ( )







×



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 −










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

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
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
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1
2 1

1
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γ ω γ
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β

γµ
β

shell
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 , (93)

where S∞ is given in Eq. (84). Observe that dynamic correc-
tions to the adiabat shape lead to a shallower profile.

Conclusion
We have derived analytical forms of the relaxation adiabat

shapes for (1) the case where the prepulse is long enough that
the rarefaction wave catches the prepulse shock at the rear
surface of the shell, and (2) the case of short prepulses, where
the mass undertaken by the unattenuated prepulse shock is less
than the total mass of the shell. The analytic relaxation adiabat
profiles derived here are in excellent agreement with simula-
tion. In addition, we have shown that relaxation designs with
short prepulses lead to steeper adiabat gradients than decaying
shock designs. The effects of mass ablation and residual
ablation pressure on relaxation adiabat shapes will be analyzed
in a future article.
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Appendix A:  Relaxed Density Profiles in Real Space

A better understanding of the relaxed profile shape can be
obtained by converting the profile functions from the Lagrangian
coordinate m to the spatial coordinate x. Equation (3) relating
the mass to the initial density is also valid if the initial density
is replaced by the density at time t as long as the lower limit
and upper limit of integration are the trajectory of the outer
surface xout(t) and the trajectory of generic fluid element x(t).
It follows that the conversion between mass and real space is
straightforward once the relation between m and x is rewritten
in the differential form

dm

dx
x t= ( )ρ , . (A1)

Equation (A1) is then used to rewrite the profiles of the first kind
[Eq. (18)] and second kind [Eqs. (43) and (44)] in real space.

1. Relaxed Profiles of the First Kind

In the case where the shock and rarefaction merge at the
inner shell surface, one can substitute Eq. (A1) into (18) and
find the density profile shape in real space:

ρ ρ
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where xout is the trajectory of the outer shell surface coinciding
with the trailing edge of the rarefaction wave moving away
from the shell with the escape velocity 2 1ap γ −( ).  The range
of x in Eq. (A2) is limited by the trailing and leading edge of
the rarefaction wave. Since the leading edge travels inside the
shell with the sound speed, the range of x is limited by xout
< x < xout + apt. Note that t = 0 at the time when the prepulse
ends and the rarefaction is launched. Equation (A2) indicates
that, in real space, the density profile is a simple power law of
the distance from the rarefaction trailing edge. The leading
edge of the rarefaction wave reaches the prepulse shock at the
inner shell surface (m* = mshell) at the time

t
m

a

d

ap p p
shell

shell shell=
( )

=
−
+ρ

γ
γ

1

1
, (A3)

where dshell is the initial shell thickness and mshell = ρ0dshell
is the total shell mass. At this time, the density profile is simply

ρ ρ
γ

t t
x x

dp=( ) =
−


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
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−
shell

out

shell

2
1

. (A4)

Note that the profile extends over a distance equal to the
uncompressed shell thickness dshell and approaches the com-
pressed density ρp on the shell�s inner surface located at
xin = xout + dshell.

2. Relaxed Profiles of the Second Kind

By defining with x*(τ) the trajectory of the Lagrangian point
corresponding to the fluid element where the prepulse shock
and rarefaction wave interact (i.e., m = m*), and with xs

p τ( ) the
location of the prepulse shock after the interaction, the spatial
density profile for the region x x xs

p
∗( ) < < ( )τ τ  can be ob-

tained by substituting Eq. (A1) into Eq. (44), leading to
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where µ = 1.45 for γ = 5/3. By defining with x x∗ ∗≡ ( )1  the
initial position inside the shell of the shock�rarefaction inter-
action point, it is straightforward to show that

x x zs
p

s
pτ τ( ) = ( )∗ , (A6)
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where zs
p  is given in Eq. (31). Equation (A5) represents the

spatial density profile of the shell portion between the shock�
rarefaction merging point and the shock front. The density
profile of the remaining portion between the shock�rarefaction
merging point and the outer shell surface is described by
Eq. (43) and in real space can again be determined by integrat-
ing Eq. (43) upon substitution of Eq. (A1). The result is similar
to the density profile of the first kind and yields
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It is important to emphasize that the density profiles [Eqs. (43)
and (44)] are approximate solutions; therefore, the profiles
[Eqs. (A5) and (A8)] are also approximate solutions. The
location of the rarefaction trailing edge (or outer shell surface)
cannot be exactly calculated because it is affected by the sound
waves traveling down from the point of shock�rarefaction
interaction. An approximate form of xout can be derived by
requiring that the density is continuous at x = x*(τ), thus
setting Eq. (A8) equal to Eq. (A5) at x*(τ). This leads to the
following form of xout:

x x x
a

z

p

s
p

out = ( )−
( )

∗ ∗ −( )τ
τ

τ
µ γ 1

2

. (A9)

Observe that, in real space, the density profile is represented by
two very different functions of x: Eq. (A5) describes the profile
behind the shock, and Eq. (A8) describes the profile behind the
rarefaction�shock merging point.
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Introduction
Maximizing the hot-fuel areal density (ρRhot) and understand-
ing the effects of mix upon it are fundamental issues of inertial
confinement fusion (ICF).1�3 One method used to estimate
ρRhot of D2-filled capsule implosions is to measure the yields
of secondary protons (Y2p) and/or secondary neutrons (Y2n)
relative to the primary neutron yield (Y1n).4�12 These second-
ary particles result from sequential reactions in which the
energetic primary products of reactions

D D MeV He MeV+ → ( ) + ( )n 2 45 0 823. . , (1)

D D MeV T MeV+ → ( ) + ( )p 3 02 1 01. . (2)

undergo fusion reactions with thermal deuterons in the fuel:

3

4
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p
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These processes produce secondary particles with spectra
spread over significant energy intervals due to the kinetic
energy of the primary reactants. The secondary-particle yields
are typically two to three orders of magnitude lower than the
primary yield, and the ratios Y Yn n2 1  and Y Yp n2 1  (which are
linearly dependent on ρRhot in certain plasma regimes) can
each be used to infer a value of ρRhot for implosions of
D2-filled capsules in both direct- and indirect-drive experi-
ments.12�15 In those studies, the simple �hot-spot� and/or the
�uniform� models were used to relate these ratios to ρRhot.

Using Nuclear Data and Monte Carlo Techniques to Study
Areal Density and Mix in D2 Implosions

Although these simple models have been widely used to infer
a value of ρRhot, they have some serious limitations that can
result in misinterpretation and errors (as described in the next
section); one manifestation of these problems is often dis-
agreement between the proton- and neutron-inferred values of
ρRhot calculated from experimental data (see Fig. 98.51).
These deviations are related to a combination of mix, tempera-
ture profile, and the difference between the cross section for
secondary reactions (3) and (4). These factors can cause
secondary protons and neutrons to be produced in different
regions of the compressed capsules (Fig. 98.52). In addition,

Figure 98.51
Secondary-proton- and secondary-neutron-implied values of ρRhot are com-
pared for implosions of low ρRhot (squares), medium ρRhot (triangles), and
cryogenic (circles) capsules on OMEGA. For low-ρRhot implosions, the
values of ρRhot inferred from secondary protons and neutrons using the
simple hot-spot model agree well. It is also shown that values of ρRhot are
larger for implosions with ~12-kJ laser energy (open squares) than for
implosions with ~23-kJ laser energy (closed squares). For these dramatically
overdriven implosions, it is possible that the effects of mix are coming back
into play, as indicated by the observation that ρRhot,2n is larger than ρRhot,2p.
For implosions with larger ρRhot, however, the values inferred from second-
ary neutrons are always larger than the values from secondary protons. The
error bars shown are typical of each type of implosion; they include uncertain-
ties in the measurements and in the assumed values of the density.
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others have noted some puzzling issues with recent secondary-
neutron measurements in indirect-drive implosions on
OMEGA.16 In that work, the authors observed a factor-of-3-
larger Y Yn n2 1  ratio and a narrower secondary-neutron spec-
trum than predicted for these low-convergence implosions
(where mix should be relatively unimportant). In contrast, for
high-convergence implosions, they found better agreement
between measured and predicted Y Yn n2 1  values.

In previous work,12 high-resolution secondary-proton spec-
tra were obtained during experiments on OMEGA.17 The
yields were used with measured neutron yields to estimate
ρRhot with the hot-spot and uniform models, and it was shown
that the Y Yp n2 1 -inferred ρRhot was often lower than the
Y Yn n2 1 -inferred ρRhot. This was attributed to the effects of
fuel�shell mix, and it was suggested that the two inferences
might be considered lower and upper limits, respectively. In
this article, that work is extended to cover a wider range of
implosion types and to include Monte Carlo simulations that
allow a detailed study of the implications of more-realistic
models of the compressed core on the secondary production.
The following sections (1) describe the hot-spot and uniform
models and their limitations, (2) describe the experiments and
the range of measured parameters, (3) describe a Monte Carlo
program that will model the implosions to understand how
particle production occurs, (4) discuss results from both ex-
periments and Monte Carlo calculations, with an emphasis on
how ρRhot is related to the yields of primary and secondary
particles, and (5) summarize the results.

Primary and Secondary Products
The hot-spot and uniform models have been commonly

used to relate Y Yp n2 1  and Y Yn n2 1  to ρRhot. The hot-spot
model assumes that an imploded capsule is a sphere of uniform
density and temperature and that all primary reactions occur at
the very center of the capsule. A fraction of the primary 3He
(tritons) fuse with thermal deuterons, producing secondary
protons (neutrons) as they move radially outward. As the
primary particles travel through the D plasma, they lose en-
ergy, and the probability for producing secondary particles
along the path varies greatly since the secondary D3He and DT
fusion cross sections (σD He3  and σDT) are strong functions of
the primary 3He and T energies [Fig. 98.53(a)].18 σD He3  peaks
at ~0.65 MeV, close to the 3He birth energy (0.8 MeV), while
σDT peaks at ~0.18 MeV, significantly lower than the triton
birth energy (1.0 MeV). As a result, secondary protons are
mainly produced near the 3He birth position, while secondary
neutrons are mainly produced farther away from the triton birth
position [see Fig. 98.53(b)]. This information is used to calcu-

Figure 98.52
Calculated radial distributions of primary- and secondary-birth positions per
unit length for (a) low-ρR implosion 30981, (b) medium-ρR implosion 27443,
and (c) cryogenic implosion 28900. For low-ρR implosions, where ρR2p and
ρR2n agree reasonably well, birth positions of secondary protons and neutrons
are virtually identical. For medium-ρR and cryogenic implosions, however,
where ρR2n is always larger than ρR2p, secondary neutrons are produced in
more outer regions compared to secondary protons. Note that calculated
radial distributions of primary birth rates per unit volume (as opposed to unit
radius) are shown in Figs. 98.60�98.62 for these three implosions.

E13037

0 50

Radius (mm)

0

1

Y
ie

ld
 (
mm

)

2
(c)

Y2n  (× 108)

Y2p  (× 107)

Y1n  (× 1010)

0.0

0.5

Y
ie

ld
 (
mm

)

1.0
(b)

Y2n  (× 107)

Y2p  (× 107)Y1n  (× 1010)

0

5

Y
ie

ld
 (
mm

)
10

(a)

Y2n  (× 106)

Y2p  (× 106)

Y1n  (× 109)



USING NUCLEAR DATA AND MONTE CARLO TECHNIQUES TO STUDY AREAL DENSITY AND MIX IN D2 IMPLOSIONS

124 LLE Review, Volume 98

late ρRhot from Y Yp n2 1  and Y Yn n2 1 , and the resulting depen-
dencies are shown in Fig. 98.54 for D plasmas with different
temperatures and densities. The ratios each saturate at different
values of ρRhot for different temperatures and densities be-
cause the primary 3He and tritons generally have significantly
different ranges in the plasma. If either particle stops before
leaving the fuel, it will not sample the entire ρRhot, and the
implied value of ρRhot underestimates the actual value. Y Yp n2 1

does not depend on temperature until it starts to saturate, while
Y Yn n2 1  is sensitive to temperature well below the saturation
level. Therefore, without a reasonable estimate of plasma
temperature, Y Yn n2 1  cannot be used to accurately infer ρRhot.

The uniform model assumes that the primary particles are
produced uniformly in a sphere of constant density and tem-
perature. The Y Yp n2 1  and Y Yn n2 1  dependencies show simi-
lar behavior to the hot-spot model. The primary difference is
that values of ρRhot implied by the uniform model are always
larger than values from the hot-spot model because the mean

path length of primary particles in the D plasma is shorter by
25% in the uniform model, when saturation has not occurred.
The simulations described in the Results section (p. 128)
indicate that the hot-spot model gives more-meaningful values
of ρRhot than the uniform model; therefore, the hot-spot model
will be used throughout the remainder of this article.

Both models have limitations that can introduce errors into
the analysis of ρRhot. These include the saturation of Y2p and
Y2n and the uncertainty introduced by the temperature depen-
dence of Y2n. The shapes of temperature and density profiles
and the presence of fuel�shell mix20�22 can have substantial
impact on secondary-particle production. In reality, the tem-
perature is highest and the density is lowest at the center of the
implosion. As the temperature decreases and the density
increases, the rate of energy loss of primary particles becomes
larger. This typically causes a reduction of the secondary-
proton production rate and an enhancement of the secondary-
neutron production rate [see Fig. 98.53(a)]. Fuel�shell mix

Figure 98.53
(a) Dependence of the secondary D3He (DT) reac-
tion cross section on the energy of the primary 3He
(T) in a cold D plasma.18 The D3He-reaction cross
section is peaked close to the birth energy of 3He,
while the DT-reaction cross section peaks dramati-
cally after T has lost most of its energy. (b) As a
result, secondary protons are created close to the
birth points of primary 3He (here defined as ρR =
0), while secondary neutrons are produced away
from the birth points of primary T (ρR = 0). Al-
though this plot is for a 1-g/cc, 3-keV D plasma, it
looks similar for plasmas with different densities
and temperatures.0
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(a) Y Yp n2 1  and (b) Y Yn n2 1  as functions of
ρRhot for a 1-, 3-, and 8-keV D plasma of
1 g/cc (solid line) and 10 g/cc (dotted line)
using the hot-spot model. The energy losses
of primary 3He and T were calculated ac-
cording to Ref. 19, and the fusion cross
sections were calculated according to
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dent until it reaches the saturation levels. In
contrast, Y Yn n2 1  is temperature dependent
well below saturation levels.
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lowers the temperature in the mix region, which increases the
energy loss rate and results in a further reduction of the
secondary-proton production rate and an enhancement of the
secondary-neutron production rate. Shell material mixed into
the fuel can directly affect secondary production by increasing
the energy lost by T and 3He after traveling through a given
amount of D, due to the higher effective charge of the shell
material mixed in.

Experiments
In the direct-drive experiments described here, distributed

phase plates,23 polarization smoothing using birefringent
wedges,24 and 1-THz, two-dimensional smoothing by spectral
dispersion25 were applied to smooth the OMEGA laser beams
in order to enhance implosion uniformity and the nuclear
reaction rate. Three types of capsules were used to study
implosions with a wide range of areal densities: Low-ρRhot
implosions were studied using thin (~3-µm) glass (SiO2) shells
filled with ~15 atm of D2. Some of these capsules were
irradiated with a 1-ns square pulse delivering 23 kJ of on-target
energy, while others were irradiated with a shorter (600- to
800-ps) pulse with on-target energy of ~12 kJ.26 Medium- and
large-ρR implosions were studied using capsules with thick
(~20-µm) plastic (CH) shells filled with ~15 atm of D2 and
cryogenic capsules with an ~100-µm layer of D2 ice enclosed
within a 3- to ~5-µm-thick CH shell, respectively. They were
all irradiated with 1-ns square pulses, delivering 23 kJ of on-
target energy.

Charged-particle data were collected with two types of
spectrometers: Wedged-range-filter proton spectrometers12,27

provided secondary-proton spectra from up to six different
directions simultaneously. These spectra were used to calcu-
late the yield and mean energy of secondary protons. Two
magnet-based charged-particle spectrometers27 provided the
spectra of primary protons and tritons for low-ρR implosions.
Neutron data were obtained from three diagnostics: Neutron
time-of-flight detectors28 provided primary- and secondary-
neutron yields as well as primary-neutron-yield�averaged ion
temperature Ti Y n1

( ), and a neutron temporal diagnostic29

measured the peak primary-neutron production time and the
DD burn duration. In addition, secondary-neutron spectra
were obtained from the 1020-scintillator array30 on some of
the more-recent implosions.

The data from each implosion then include the five quanti-
ties Y1n, Y2n, Y2p, �Ti�Y1n

, and �E2p�, which will be matched to
simulations in the next section. In addition, the spectral energy
distributions of the secondary protons (and sometimes second-

ary neutrons) will be compared with the simulations. The
yields and �Ti�Y1n

, together with a realistic plasma density, can
also be used to determine what the simple hot-spot and uniform
models imply for values of ρR phot

expl
,2  and ρR nhot

expl
,2  (where the

superscript �exp1� refers to the use of the measured �Ti�Y1n
 as

the characteristic ion temperature).

Monte Carlo Simulations
A Monte Carlo program was developed to model the experi-

ments described in the previous section. This allows us to use
more-realistic temperature and density profiles than those in
the hot-spot and uniform models. The burn-averaged ion
temperature profile [Ti(r)] and the shell (or cold fuel, for
cryogenic capsules) density profile [ρcold(r)] are assumed to
have super- or sub-Gaussian profiles, and the six input param-
eters are Ti0, Tiw, Tip, Sr0, Sw, and Sp characterizing the tempera-
ture and density profiles

T r T r Ti i iw
Tip( ) = −( )[ ]0 exp (5)

and

ρ ρcold coldr r S Sr w
Sp( ) = − −( )[ ]{ }0 0exp . (6)

These parameters are varied to produce simulated particle
production that best fits the measured data for each implosion.
The hot-fuel density profile [ρhot(r)] is calculated assuming
that the plasma is isobaric out to the peak shell pressure region;
with this constraint, ρcold0 is then adjusted to conserve the fuel
mass. (The initial fuel mass is calculated based on the initial
fuel pressure and the size of the capsule.)

For computational purposes, each primary particle is as-
sumed to produce a secondary particle, and a spectrum of
particles per unit energy dN dE2  is obtained. Since only a
small fraction of the primary particles actually undergo sec-
ondary reactions, the secondary yield and spectrum need to be
normalized according to Y2 = �P2�Y1 and

dY dE P Y dN dE N2 2 1 2 2≈ ( ) ;

P n l l dl2 ≡ ( ) ( )∫ D σ sec

is the probability of primary-to-secondary conversion, calcu-
lated in the program as the primary-yield�weighted mean
value of the line integral of the D number density (nD) times the
secondary fusion cross section (σsec) for all possible primary-
particle trajectories. The primary-particle production is deter-
mined by the density and temperature profiles. The particles
are followed along their trajectories through the capsule until
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they either escape or lose all of their energy. The energy loss is
calculated, as briefly described in the next paragraph, in order
to obtain σsec along paths of primary particles. The probability
of a secondary fusion reaction is calculated along the path of
the primary particle; then the birth position, direction, and
energy of the secondary particle are calculated. The radial
distributions of the primary- and secondary-particle birth po-
sitions are recorded as well to illustrate the effects of profiles
and fuel�shell mix.

The energy loss of charged particles in plasmas is strongly
dependent upon the velocity of the particle. Depending on the
relative magnitude of the particle velocity vp and the thermal
velocity vth of the background electrons, the plasma can be
described as ��cold�� (vp >> vth), ��warm�� (vp ~ vth), or ��hot��
(vp << vth). The theory described in Ref. 19 predicts that the
plasma-stopping power reaches a maximum when vp ≈ vth,
which was also demonstrated for the first time in Ref. 39. The
general form for the charged-particle energy loss per unit
distance, dE/dx, in fully ionized plasmas is given by19
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


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














1
2

2 2

2Z

dE

dX

e
Gp

p

pω

v

v

vth
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where ω πp e en e m= ( )4 2 1 2
 is the electron-plasma frequency,

Z is the projectile charge number, vp is the velocity of the
particle, vth = ( )2 1 2T me  is the thermal velocity of the plasma
electrons, and lnΛ is the Coulomb logarithm; ne, e, and me are
the electron density, charge, and mass, respectively. G pv vth( )
is the Chandrasekhar function, which peaks at v vp th ≈1, and
explains why the stopping power reaches a maximum when
vp ≈ vth. The formulation given above applies to both plasma-
electron stopping and plasma-ion stopping, where the latter,
for the conditions of interest here, is about 10% of the stopping
by electrons.

Since the model is static, the primary yield is calculated by
multiplying the burn profile by the burn duration (full width at
half maximum of the neutron-production rate); therefore, the
error in the measurement of the burn duration is included in the
error of the primary yield. �E2p� is calculated from the second-
ary-proton spectrum, and �Ti�Y1n is determined in the region
where the primary particles are produced.31 Each of the six
input parameters is varied over a large range, initially using
large steps to identify the region of small χ2. This region is then
more carefully explored using finer grids; as a result, the six-
dimensional parameter space is explored completely. For each
set of model parameters, the predicted values of the experi-

mentally measured quantities are calculated and the quality of
agreement with the data from a particular implosion is charac-
terized with the total χ2, which takes into account uncertainties
in the experimental measurements. For each implosion, it is
found that multiple local minima exist within the space of
model parameters but there is one clear region with the small-
est values of χ2. Errors in the values of individual model
parameters are then estimated by asking how much they can
be changed without causing the total χ2 to increase by more
than 1. Although the widths and shapes of secondary-proton
spectra are not used as fit criteria, it will be seen that the
predicted spectra match the measured spectra quite well; this
fact provides extra confidence that the best-fit-model param-
eters are realistic.

The characteristics of the best-fit model for each implosion
were used to determine how realistic the hot-spot-model in-
ferred values of ρRhot are. Values of Y Yp n2 1 , Y Yn n2 1 ,  �Ti�Y1n

,
and plasma density from the simulations were used
to infer ρR phot

sim
,2
1  and ρR nhot

sim
,2
1  according to Fig. 98.54 (the

superscript �sim1� indicates that �Ti�Y1n
 was used as the

characteristic ion temperature). The values of ρR phot
sim

,2
2  and

ρR nhot
sim

,2
2  were calculated assuming that the appropriate tem-

peratures are averages weighted by secondary yields
�Ti�Y2p

 and �Ti�Y2n
, respectively. These values were then

compared with ρ ρR drhot D
int ≡ ∫ , integrated over the hot-

fuel region.

Results
1. Low-Areal-Density Implosions

For low-ρRhot implosions, the primary 3He and T traverse
the entire hot-fuel region, and the values of ρRhot inferred from
secondary protons and neutrons using the hot-spot (or uni-
form) model generally agree with each other and usually give
a reasonable estimate of the actual value of ρRhot. This is
shown experimentally by the square points in Fig. 98.51,
which compares values of ρR phot,

exp
2
1  and ρR nhot,

exp
2
1 . These val-

ues were inferred according to Fig. 98.54 assuming a D plasma
with a temperature of �Ti�Y1n

 keV and a density of 1.5 g/cc
(obtained from a typical best-fit simulation, as discussed
below). Figure 98.51 also illustrates that ρR phot,

exp
2
1  and ρR nhot,

exp
2
1

are larger for implosions with lower (~12 kJ) on-target laser
energy (open squares) than for implosions with full (~23 kJ)
laser energy (closed squares). This could be explained by a
larger amount of glass shell being ablated away in full-energy
implosions, resulting in less material to drive the fuel in-
ward32,33 (Fig. 98.55). In addition, these values of ρRhot

exp1

from D2 implosions with full laser energy show reasonable
agreement with values from similar thin-glass-shell DT
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implosions,34,12 for which the knock-on method35 was used
to determine the ρRhot.
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Figure 98.55
One-dimensional clean LILAC simulations for low-ρR implosion 30981
indicate that hot-fuel ρR starts to decrease as the capsule is significantly
overdriven. This trend agrees with measurements where ρRhot is lower for
full-laser-energy�driven (~23-kJ), thin-glass-shell capsules than for low-
laser-energy�driven (~12-kJ) capsules (Fig. 98.51).

For implosion 30981, which involved a 3.1-µm glass shell
filled with 14.7 atm of D2 gas, Fig. 98.56(a) shows simulated
density and temperature profiles from the best-fit simulation.
Figure 98.56(b) shows radial distributions of the primary- and
secondary-particle-birth positions; secondary protons and neu-
trons are produced in virtually identical regions of the capsule.
In addition, a high plasma temperature and a low ρRhot result
in similar values of ρRhot

sim1 inferred from the simulated sec-
ondary yields. Values of ρRhot

sim1  are inferred using the hot-spot
model and assuming a plasma temperature of �Ti�Y1n

 keV and
a plasma density of 1.5 g/cc (obtained from simulation). In
addition, values of ρRhot

sim1 agree with ρRhot
int  obtained from the

fuel-density profile shown in Fig. 98.56(a); this indicates that
the small amount of fuel�shell mix in this type of implosion
does not have much impact on the accuracy of the simple
model. Results of the simulation along with measured data are
summarized in Table 98.IV.

Simulated secondary spectra are in good agreement with
measured spectra as shown in Figs. 98.56(c) and 98.56(d). The
measured secondary-proton spectrum is an average of five
spectra obtained simultaneously at different angles from im-
plosion 30981.

2. Medium-Areal-Density Implosions
Correctly inferring the value of ρRhot is more difficult for

implosions of capsules with thick plastic shells because Y2p
reaches saturation when ρRhot is sufficiently large, and Y2n is
enhanced in the presence of increased fuel�shell mix. The
triangles in Fig. 98.51 show that the values of ρR phot,

exp
2
1  are

often smaller than the values of ρR nhot,
exp

2
1 , as previously re-

ported in Ref. 12. Values of ρR phot,
exp

2
1  and ρR nhot,

exp
2
1  are inferred

assuming a temperature of �Ti�Y1n
 keV and a D plasma with a

density of 2 g/cc.

Figure 98.57(a) shows the temperature and density profiles
that result in the best fit to the measured data for implosion
27443 (19.4-µm plastic shell filled with 15 atm of D2 gas), and
Fig. 98.57(b) shows the resulting radial distributions of pri-
mary- and secondary-particle-birth positions. About 32% of
the initial CH mass remains, and ~1.3 µm of the initial CH
layer has mixed into the fuel (which is similar to the amount of
mix reported in Refs. 20�22).36 The 3He are ranged out be-
fore traversing the entire fuel region. Figure 98.57(b) also
illustrates an enhancement of Y2n by fuel�shell mix; the
increased energy loss of T per unit ρRhot, due to the cooler,
dense shell material, results in an enhanced DT fusion cross
section (Fig. 98.53), which causes Y Yn n2 1  to overestimate
ρRhot

int . In addition, Y Yn n2 1  is more sensitive to temperature in
this ρRhot range; using �Ti�Y1n

, which is always higher than
�Ti�Y2n

, results in a larger inferred value of ρRhot.

Simulated yields and additional parameters characterizing
the implosion are summarized and compared with measure-
ments in Table 98.V. This table shows that the values of ρRhot

sim1

implied by secondary protons and neutrons are smaller and
larger than the value of ρRhot

int , respectively. The hot-spot
model was used to obtain values of ρRhot using �Ti�Y1n

 keV
for the temperature and assuming the density of the D plasma
was 2 g/cc.

The simulated secondary-proton spectrum is compared
with the measured spectrum in Fig. 98.57(c). The measured
secondary-proton spectrum is an average of three spectra
simultaneously obtained at different angles from implosion
27443 and shows more downshift than spectra from the low-
ρRhot implosions. The widths of the secondary-proton and
secondary-neutron spectra [Fig. 98.57(d)] are slightly nar-
rower than in the previous case because the average energy of
the primary particle, at the time it undergoes secondary fusion,
is smaller.12
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Figure 98.56
Parameters from the best-fit Monte Carlo simulation of shot 30981 (3.1-µm SiO2 shell filled with 14.7 atm of D2). (a) Ti(r) and ρ(R). Fuel mass is fully conserved,
while 11% of the shell mass remains. (b) Radial distributions of the birth positions of primary and secondary particles indicate that secondary protons and
neutrons are produced in a virtually identical region of the capsule. (c) Measured and simulated secondary-proton and (d) secondary-neutron spectra. Note that
the shape and width of the simulated proton spectrum are very similar to those of the measured spectrum, even though these were not part of the fitting proce-
dure. The difference in simulated and measured secondary yields is within the measurement uncertainties. Measured and simulated values of implosion
characteristics are summarized in Table 98.IV. Figure 98.60 indicates how the radial profiles of Ti and ρ can change without changing too much the quality of
the fit to the data.
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Table 98.IV: Measured and simulated values of yields and ρR for OMEGA implosion 30981.
Experimental data were fitted by adjusting ρ(R) and Ti(r). Total χ2 along with parameters
specifying the cold (SiO2) temperature and density Gaussian profiles [peak temperature
(Ti0), 1/e radius (Tiw), power of the exponent (Tip), peak density radius (Sr0), 1/e radius
(Sw), and power of the exponent (Sp)] are also listed. ρRcold = ∫ρcolddr, integrated radially
over the SiO2 shell region, and ρRhot = ∫ρDdr, integrated radially over the hot-fuel region
of the simulated profiles. Values of ρRhot,2n and ρRhot,2p were deduced using measured
and simulated yield ratios assuming a 1.5±1-g/cc [obtained from Fig. 98.56(a)] D plasma at
�Ti�Y1n

±0.5 keV.

Shot 30981

Measured Simulated

Y1n (1.5±0.15) × 1011 (1.5+0.23–0.18) × 1011

Y Yn n2 1 (5.1±0.98) × 10−4 (5.1+1.1–0.57) × 10−4

Y Yp n2 1 (7.9±1.1) × 10−4 (7.6+1.0–0.96) × 10−4

E p2 MeV( ) 14.47±0.1 14.64+0.14–0.16

Ti Y n1
keV( ) 8.2±0.5 8.2+0.7–0.5

χ2 … 0.1

Ti0 (keV) … 20.5+2.5–10

Tiw (µm) … 34+14–4

Tip … 2+5–0

Sr0 (µm) … 62+6–10

Sw (µm) … 3.5+3–3.3

Sp … 2.5+7.5–2

ρRcold (mg/cm2) … 4.5+4.3–4.2

ρRhot (mg/cm2) … 3.7+0.8–0.4

ρRhot,2n (mg/cm2) 4.6+0.9–1.2 4.6+1.0–0.6

ρRhot,2p (mg/cm2) 4.3+0.6–0.8 4.1±0.5

3. Cryogenic Implosions
For cryogenic implosions, the interpretation of inferred

values of ρRhot is even more subtle since there is a high-
temperature, low-density fuel region and a low-temperature,
high-density fuel region. If most of the secondary particles are
produced only in the hot-fuel region, Y Y n2 1  can be used to
infer ρRhot. On the other hand, if secondary particles are
produced mainly in the inner part of the cold-fuel region, the
inferred ρR is larger than ρRhot, but smaller than ρRtotal. (Even

the more-penetrating T cannot traverse the entire cold-fuel
region since the range of T in an 8-g/cc, 1-keV D plasma is
~15 mg/cm2, and we usually calculate ρRtotal > 40 mg/cm2

from the downshift of the average secondary-proton energy for
cryogenic implosions.) Figure 98.51 shows that values of
ρRhot implied by measured Y Yn n2 1  are always larger than
values from measured Y Yp n2 1  for those implosions (values
were inferred assuming a �Ti�Y1n

 keV, 3-g/cc D plasma).
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Figure 98.57
Best-fit parameters from the Monte Carlo simulation for shot 27443, which involved a 19.4-µm CH shell filled with 15 atm of D2. (a) Ti(r) and ρ(r). Fuel mass
is fully conserved, while 32% of the shell mass remains. (b) Radial distributions of the birth positions of primary and secondary particles show that secondary-
proton production is diminished, while secondary-neutron production is enhanced in the region of significant fuel�shell mix. This causes secondary protons
to underestimate and secondary neutrons to overestimate the actual value of ρRhot. (c) Measured and simulated secondary-proton spectra are compared, and
(d) simulated secondary-neutron spectrum is shown. The secondary-proton spectra show more energy downshift, and the width of the secondary spectra are
slightly narrower than the low ρRhot case because the average primary particle energy is smaller at the time of secondary reaction. Measured and simulated values
of implosion characteristics are listed in Table 98.V, while other fits are illustrated in Fig. 98.61.
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Table 98.V: Measured and simulated values of implosion characteristics for OMEGA implosion 27443.
Values ρRhot were calculated assuming a 2±1-g/cc D plasma at �Ti�Y1n

±0.5 keV. Results
from simulation indicate that the ρRhot,2p underestimates and ρRhot,2n overestimates the
actual value.

Shot 27443

Measured Simulated

Y1n (1.5±0.15) × 1011 (1.6+0.1–0.25) × 1011

Y Yn n2 1 (1.5±0.24) × 10−3 (1.4+0.16–0.12) × 10−3

Y Yp n2 1 (1.0±0.14) × 10−3 (1.0+0.1–0.15) × 10−3

E p2 MeV( ) 13.1±0.1 13.07+0.1–0.11

Ti Y n1
keV( ) 4.1±0.5 4.1+0.2–0.4

χ2 … 0.5

Ti0 (keV) … 11+0–5.5

Tiw (µm) … 20+18–0

Tip … 0.8+1.2–0

Sr0 (µm) … 54±2

Sw (µm) … 16+2–6

Sp … 1.2+0–0.2

ρRcold (mg/cm2) … 42.3+3.9–2.1

ρRhot (mg/cm2) … 8.9+1–0.4

ρRhot,2n (mg/cm2) 12.8±1.9 11.6+1.2–1

ρRhot,2p (mg/cm2) 5.0±0.7 5.2+0.5–0.7

Radial profiles of temperature and density calculated for
implosion 28900 (89-µm D2-ice layer inside a 5.1-µm CH
shell) are shown in Fig. 98.58(a), and simulated and measured
spectra are shown in Figs. 98.58(c) and 98.58(d). As indicated
in Fig. 98.58(d) and Fig. 98.59, the secondary-neutron spec-
trum is much narrower than the secondary-neutron spectra
from Figs. 98.56(d) and 98.57(d) because the primary T are,
on average, less energetic when they fuse with thermal D.12

Measurements of secondary-neutron spectra from more-
recent cryogenic implosions also show the same characteristics.

The radial distributions of the primary- and secondary-birth
positions shown in Fig. 98.58(b) indicate that secondary pro-
tons and neutrons are born mainly in the hot- and cold-fuel
regions, respectively. Therefore, the ρR obtained from second-
ary protons gives an estimate of ρRhot, while the secondary-
neutron yield provides a lower limit on ρRtotal. In this type of
implosion, effects of mix or exchange of hot and cold fuel play
significant roles in determining the radial distribution of sec-
ondary-birth positions.
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Figure 98.58
(a) Simulated profile of shot 28900 (cryogenic capsule with a 5.1-µm CD shell and 89-µm D2-ice layer), which gives the best fit to the measurement; 31% of
the total mass remains. (b) Radial distributions of the birth points of primary and secondary particles show that most of the secondary protons are produced in
the hot-fuel region, while secondary neutrons are mainly produced in the cold-fuel region. (c) Measured and simulated secondary-proton spectra. (d) Simulated
secondary neutron spectrum is narrower than the spectra in Figs. 98.56(d) and 98.57(d) because primary T are less energetic at the time they undergo secondary
reactions; ρR of cold fuel is large enough to stop primary T [Fig. 98.58(b)], and the cross section increases as T loses energy [Fig. 98.53(a)]. Important implosion
characteristics are summarized in Table 98.VI, while other fits are illustrated in Fig. 98.62.
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Simulated values of yields and other important implosion
characteristics are compared with measured results in
Table 98.VI. The secondary-neutron, hot-spot-model�inferred
ρRsim1 is close to ρRtotal

int , but this does not mean that the
hot-spot model describes the implosion accurately. The agree-
ment is an accidental consequence of using the wrong tempera-
ture �Ti�Y1n

, which samples the hotter central region rather
than the cooler fuel region where most of the secondary
neutrons are produced.

This implosion has also been analyzed using a combination
of x-ray and neutron measurements, without the use of second-
ary-proton data. These results are discussed in Ref. 37. While
the best-fit profiles were somewhat different, they agree within
the uncertainties of the two simulation techniques.

Conclusions
The hot-spot and uniform models have been used to infer

the areal density of the hot-fuel region (ρRhot) of D2 implo-
sions, but disagreements between the values of ρRhot inferred
from secondary-proton and secondary-neutron yields have
often been observed, indicating limitations in these models.
Results from direct-drive experiments on the OMEGA laser
system and Monte Carlo simulations provided a deeper under-
standing of the relationship between ρR, the capsule structure,
and secondary-particle production. Experiments show that
values of ρRhot inferred from the ratios of secondary-proton
and neutron-to-primary neutron yields ( Y Yp n2 1  and Y Yn n2 1 )
using the hot-spot model agree well for low-ρRhot implosions
(thin-glass-shell capsules), and simulations indicate that they

give a good estimate of the actual value of ρRhot. The results
from implosions of D2-filled, thin-glass shells also show
reasonably good agreement with results from implosions of
similar capsules filled with DT gas. For thick-plastic-shell-
capsule implosions, where the ρRhot of an implosion becomes
sufficiently large, Y Yp n2 1  underestimates ρRhot since the
primary 3He are ranged out before sampling the entire hot-fuel
region. In addition, fuel�shell mix increases the rate of energy
loss of 3He and causes Y Yp n2 1  to further underestimate
ρRhot. The fuel�shell mix also causes Y Yn n2 1  to overestimate
ρRhot by slowing down the primary T, thereby increasing the
secondary DT fusion reaction cross section. As a result, values
of ρRhot for medium ρRhot capsules inferred from Y Yp n2 1  and
Y Yn n2 1  using the hot-spot model should be interpreted as
estimates of the lower and upper limits on the actual ρRhot,
respectively. For cryogenic capsules, secondary protons are
produced mainly in the hot-fuel region, and the proton-implied
value of ρR provides a good estimate of the hot-fuel ρR. In
contrast, secondary neutrons are mostly produced in the inner
part of the cold-fuel region, and the neutron-implied ρR gives
a lower limit on the total ρR when calculated correctly using
the average temperature and density of the secondary-neutron
birth point. Naive use of the simple hot-spot or uniform model,
with a burn-averaged temperature, often results in inaccurate
inference of ρRhot. A more-thorough analysis, such as the use
of complete data sets and simulations to determine the second-
ary-birth positions and the effects of mix, as presented herein,
or the use of detailed analysis of secondary-neutron spectra
both from experiments and simulations,10 is required in order
to obtain a realistic estimate of ρRhot.

Figure 98.59
The simulated secondary-neutron spectrum is narrower than the spectra in
Figs. 98.56(d) and 98.57(d) because the primary T are less energetic at the time
they undergo secondary reactions; ρR of cold fuel is large enough to stop
primary T [Fig. 98.58(b)], and the cross section increases as T loses energy
[Fig. 98.53(a)]. Note that detailed analysis of secondary-neutron spectra was
used to study areal density in Ref. 10.
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Table 98.VI: Measured and simulated values of implosion characteristics for OMEGA implosion 28900.
ρRtotal = ∫ρDdr, integrated radially over the entire simulated profiles; ρRhot is defined as
the ρR that includes 90% of primary production. Values of ρRhot were calculated assuming
a 3.0±1.5-g/cc D plasma at �Ti�Y1n

±0.5 keV. Results from the simulation suggest that the
value of ρRhot,2p provides a good estimate of ρRhot. Secondary-neutron implied ρRhot is
similar to ρRtotal, but this is because the value of the temperature used to infer ρRhot is too
large. If the temperature of the cold-fuel region (1 keV instead of 3.6 keV) were used, a
much smaller and physical value of ρRhot would be implied.

Shot 28900

Measured Simulated

Y1n (1.2±0.12) × 1011 (1.3+0.12–0.14) × 1011

Y Yn n2 1 (9.4±1.4) × 10−3 (9.1+1.0–1.1) × 10−3

Y Yp n2 1 (1.8±0.26) × 10−3 (1.6+0.0–0.2) × 10−3

E p2 MeV( ) 13.31±0.10 13.28+0.5–0.11

Ti Y n1
keV( ) 3.6±0.5 3.5+0.6–0.3

χ2 … 0.6

Ti0 (keV) … 8.5+9.5–2.5

Tiw (µm) … 18+10–8

Tip … 1.2+0.6–0.4

Sr0 (µm) … 52+22–2

Sw (µm) … 32+16–12

Sp … 9+≥1–7.5

ρRtotal (mg/cm2) … 48.2+3.2–6.0

ρRhot (mg/cm2) … 7.9+0.2–1.7

ρRhot,2n (mg/cm2) 49.8+5.0–6.9 48.0+4.9–4.0

ρRhot,2p (mg/cm2) 9.3+1.9–1.5 7.8+0.5–0.6
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Figure 98.61
Samples of (a) temperature, (b) and (d) density,
(c) pressure, and (d) burn profiles that produced
fits to the data that were not as good as the best fit
for implosion 27443 (as described in the caption
of Fig. 98.60). The width of the burn profile is
narrower than the width for implosion 30981,
indicating more compression.

Figure 98.60
Samples of (a) temperature, (b) and (d) density,
(c) pressure, and (e) burn profiles that produced
fits to the data that were not as good as the best fit
for implosion 30981. Solid lines represent the
best-fit profiles; dashed and dotted lines represent
the fits having the highest and lowest peak tem-
perature, respectively, in the group of fits for
which the total χ2 is within one of its minimum
values (gray lines).0
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Figure 98.62
Samples of (a) temperature, (b) density, (c) pressure, and (d) burn profiles that produced fits to the data that were not as good as the best fit for implosion 28900
(as described in the caption of Fig. 98.60). The width of the burn profile is narrower than the width for implosion 30981, indicating more compression.
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