
THEORY OF LASER-INDUCED ADIABAT SHAPING IN INERTIAL FUSION IMPLOSIONS: THE RELAXATION METHOD

106 LLE Review, Volume 98

Introduction
In recent years it has been theoretically shown that the stability
of inertial fusion implosions can be significantly improved by
shaping the entropy inside the shell. The optimum adiabat
shape in the shell consists of a profile that is monotonically
decreasing from the outer to the inner surface. Large values of
the adiabat on the outer shell surface increase the ablation
velocity Va, which follows a power law of the outer-surface
adiabat α out,

Va ~ ,αout
3 5 (1)

while low adiabat values on the inner surface lead to improved
ignition conditions and larger burn fraction. A more-detailed
history and target design implications of adiabat shaping can
be found in the introduction of Ref. 1, which is mostly devoted
to the adiabat shape induced by a strong decaying shock.
Shaping by a decaying shock1,2 requires a very strong prepulse,
followed by a low-intensity foot of the main pulse, to launch a
strong shock, which decays inside the shell shortly after the
prepulse is turned off. The decaying shock (DS) leaves behind
a monotonically decreasing adiabat profile, which follows a
power law of the mass coordinate

α α= 



in

shell
DSm

m

∆
, (2)

where m is the mass calculated from the outer surface, mshell is
the total shell mass, and ∆DS varies between 1.06 and 1.13
depending on the prepulse duration. Two-dimensional simula-
tions2 of all-DT, OMEGA-sized capsule implosions have
confirmed that DS adiabat targets exhibit significantly reduced
Rayleigh�Taylor growth on the ablation surface during the
acceleration phase with respect to the flat-adiabat targets.
Comparisons between flat- and shaped-adiabat targets are
typically carried out by designing the flat- and shaped-adiabat
pulses to generate identical adiabats on the inner shell surface.

Theory of Laser-Induced Adiabat Shaping in Inertial Fusion
Implosions: The Relaxation Method

A different technique aimed at shaping the adiabat is the
so-called shaping by relaxation (or RX shaping) described in
Ref. 3. The relaxation technique uses a less-energetic prepulse
than the DS technique. The RX prepulse is used to launch a
shock that may or may not decay inside the shell. In both cases,
the prepulse is turned off before the prepulse shock reaches
the shell�s inner surface. Since the prepulse is followed by a
complete power shutoff, the outer portion of the shell expands
outward, generating a relaxed density profile, while the prepulse
shock travels inside the shell. The prepulse shock is not
intended to greatly change the shell adiabat even though it may
cause a significant adiabat modification. The main adiabat
shaping occurs later in time when the foot of the main pulse
starts, driving a strong shock up the relaxed density profile.
The main shock first encounters the low-density portion of the
relaxed profile, setting it on a very high adiabat. The adiabat
develops a monotonically decreasing profile as a result of the
increasing pre-shock density. Figure 98.43 shows a plot of the
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Figure 98.43
Pressure (dashed), density (dot�dashed), and adiabat (solid) profiles gener-
ated by a strong shock supported by constant pressure propagating through a
relaxed density profile.
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pressure, density, and entropy profiles generated by a strong
shock propagating through a relaxed density profile. Observe
that the adiabat profile is strongly shaped with large values on
the outer shell surface and low values on the inner shell surface.
To produce a monotonically decreasing adiabat profile, it is
important to design the laser pulse so that the prepulse and
main shock merge at the inner shell surface. The RX adiabat-
shaping technique can be viewed as a two-step process: the
prepulse and power shutoff are needed to generate the relaxed
density profile, following which the foot of the main pulse
shapes the adiabat.

In this article, a detailed hydrodynamic analysis of the
relaxed profile generation as well as the shock propagation
through these profiles is carried out.

The General Model
The general gasdynamic model governing the hydrody-

namic motion of a compressible gas is greatly simplified by
adopting a Lagrangian frame of reference where the indepen-
dent spatial coordinate is the mass. In planar geometry, the
mass coordinate is defined as the mass per unit area calculated
from the outer shell surface:

m x dxx= ′( ) ′∫ ρ , ,00 (3)

where ρ x,0( )  is the initial density and x  is the initial spatial
location of the fluid elements.

In this coordinate, the outer shell surface is represented by
x = 0  and m = 0. In spherical geometry, Eq. (3) should be
replaced by m r r drr= ′ ′( ) ′∫ 2

0
0ρ , .  For simplicity, we carry out

the calculation for the case of an ideal gas with adiabatic index
γ and neglect convergence effects on the basis that the adiabat
shaping occurs when the inner shell surface has not yet moved
and the initial aspect ratio is sufficiently large that the shell can
be approximated with a uniform slab.

In the Lagrangian frame and away from the shock front, the
planar equations of motion for the shocked material can be
written in the following conservative form:

∂
∂

−
∂
∂

=
u

m t

1
0

ρ
, (4)

∂
∂

+
∂
∂

=
u

t

P

m
0, (5)

p S m= ( )ργ , (6)

where u, P, ρ, and S(m) are the velocity, pressure, density, and
entropy, respectively. The function S(m) is referred to as the
adiabat and depends exclusively on the Lagrangian coordinate.
At the shock front, the physical quantities must satisfy the
Hugoniot conditions, which in the strong shock regime can be
written in the following simple form:

ρ
γ
γ

ρps
sh sh

[ ] =
+
−

[ ]
m m

1

1 0 , (7)

u
m

m
m

ps
sh

pssh
sh

[ ] =
− [ ]
2

1γ ρ

ú
, (8)

ú ,m P
msh ps ps

sh
=

−( ) [ ]γ
ρ

1

2
(9)

where Pps represents the post-shock pressure, ρps is the post-
shock density, ups is the post-shock velocity, and ρ0 is the initial
unshocked density. Here, msh is the mass coordinate corre-
sponding to the shock location. More details on the Lagrangian
model used here can be found in Ref. 1.

The Generation of the Relaxed Profiles
When a square laser prepulse precedes the main laser pulse,

a pressure pulse is applied to the shell�s outer surface, launch-
ing a uniform shock followed by a rarefaction wave, which
causes a relaxation of the pressure and density profiles. Since
the leading edge of the rarefaction wave travels faster than the
shock, it eventually catches the shock unless the shock reaches
the inner shell surface before interacting with the rarefaction
wave. Two different relaxed profiles are generated depending
on whether or not the rarefaction leading edge catches the
prepulse shock inside the shell. If the shock and rarefaction do
not merge in the shell, the resulting relaxed profiles are said to
be of the �first kind� while merging leads to relaxed profiles of
the �second kind.�

It is convenient to define with subscript p the prepulse
quantities, Pp, ρp, Sp, ap, and up, representing the induced
pressure, compressed density, adiabat, sound speed, and flow
velocity while the uniform laser prepulse of duration ∆tp is
applied. Using the prepulse quantities, we define the following
set of dimensionless quantities and coordinates:
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� , � , � ,ρ
ρ
ρ

≡ ≡ ≡
p p p

P
P

P
u

u

a
      (10)

� , , ,S
S

S
z

m

m

t

tp
= = =

∗ ∗
      τ

∆
(11)

where

∆
∆

t
tp

∗ =
−( ) −2 1 1γ γ

, (12)

m t a t Pp p p p∗ ∗ ∗= =∆ ∆ρ γ ρ . (13)

Here ∆t* is the travel time of the rarefaction wave before
catching the shock, and m* is the areal density undertaken by
the rarefaction wave�s leading edge before catching the pre-
pulse shock. Furthermore, τ = 0 is defined as the time when
the laser prepulse is terminated and the rarefaction wave is
launched. It follows that τ = 1 represents the shock�rarefaction
interaction time.

These dimensionless variables can be used to rewrite the
Lagrangian equations of motion in the convenient form

∂
∂

=
∂
∂

−� �
,

u

z

ρ
τ

1
(14)

γ
τ
∂
∂

= −
∂
∂

� �
,

u P

z
(15)

� � � .P S z= ( )ργ (16)

Observe that Eqs. (14)�(16) can be combined into the follow-
ing single equation:

γ
τ ρ

ργ
∂

∂
+
∂

∂
( ) =

2

2

2

2
1

0
�

� � ,
z

S z (17)

which can be solved for �ρ  once �S  is known. There is no
general solution of the equations of motion after the rarefaction
wave is launched; however, one can consider two limiting
cases resulting in two different relaxed profiles. The first is
the case when the rarefaction wave catches the shock at the

shell�s rear surface. This case is characterized by values of
m* = mshell. The second is the case when the rarefaction wave
quickly catches the shock near the outer surface, causing the
shock to decay throughout most of the shell. This case requires
a small m* satisfying m* < mshell. We will consider these two
cases separately.

1. Relaxed Profiles of the First Kind: Rarefaction and
Shock Merge at the Rear Surface of the Shell: m* = mshell

In this case, the relaxed density and pressure profiles are the
ones generated by the rarefaction wave, whose functional
forms can be obtained from Ref. 1 or from most textbooks on
compressible flow. In the mass coordinate, the density profile
can be written in the following simple form:

ρ τ ρ
τ

ργ γ
z

z m

mp p<( ) = 




=










+ +
2

1

2
1

rf
, (18)

where mrf = apρpt represents the trajectory of the rarefac-
tion wave�s leading edge. For z > τ, the density is uniform and
equal to the post-shock density ρ = ρp.

2. Relaxed Profiles of the Second Kind: Rarefaction
Catches the Shock Inside the Shell: m* < mshell

In this case, the derivation of the relaxed profiles is signifi-
cantly more complicated since there is no exact solution of the
equations of motion after the rarefaction wave catches the
prepulse shock. After the rarefaction wave reaches the shock at
z = 1, the latter decays, leaving behind a relaxed profile with
two distinct spatial shapes in the regions 0 < m < m* and
m m ms

p
∗ < < ,  where ms

p  is the location of the prepulse shock.
In the dimensionless variable z m m= ∗ ,  those two regions are
0 < z < 1 and 1 < <z zs

p , where z m ms
p

s
p≡ ∗ .

a.  The region z < 1.  One could speculate that the profiles
in the region 0 < z < 1 have a similar shape to the ones generated
by the rarefaction wave, ρ ~ z2/γ +1; however, this assumption
does not take into account a second profile relaxation occurring
when a sound wave travels backward down the rarefaction-
wave profile right after the rarefaction wave catches the shock.
The solution in the regions 0 < z < 1 must satisfy Eq. (17) and
the boundary conditions at z = 0 and z = 1. At z = 0, the vacuum
boundary condition requires that ρ(z = 0) = 0. At z = 1, both the
pressure and its gradient must be continuous to prevent sepa-
ration of the continuous medium requiring that
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P z P z

dP

dz
z

dP

dz
z

=( ) = =( )

=( ) = =( )

− +

− +

1 1

1 1

, , ,

, , .

τ τ

τ τ

   

(19)

It would be unrealistic to hope that a simple power law in z
would exactly satisfy the equations of motion and the boundary
conditions; however, one could attempt to look for an approxi-
mate solution behaving as a power law of the mass coordinate

� ,ρ ρ τ α≈ ( )z (20)

which, by construction, satisfies the boundary conditions at
z = 0. Substituting Eq. (20) into Eq. (17) with �S = 1 leads to
the following two conditions:

d

d

2

2
1

1 0
τ ρ

α αγ ργ+ −( ) ≈ , (21)

F1
1

2
1α

α γ
( ) ≡

+( )
≈ . (22)

Note that the symbol ≈ has been used to indicate that the
function (20) is meant to represent an approximate rather than
an exact solution. To solve Eq. (21), one needs two initial
conditions for ρ  and d dρ τ  at τ = 1+ just after the rarefaction
wave interacts with the shock. While the initial condition for
the density at z = 1 is trivial,

ρ τ =( ) =+1 1, (23)

the condition on the time derivate at τ = 1+ is rather compli-
cated. The exact derivation of � ,′( )ρ 1 1  is described in Ref. 1 and
leads to Eq. (56) of Ref. 1, which reads as

d

d

ρ
τ

γ

γ
γ

γ
γ

τ







= −
+( )

+
−( )

+
−= +1

6 1

3
2 2 1

1
2

. (24)

It is worth mentioning that the initial condition on the den-
sity spatial profile at τ = 1 requires that the function
� ,ρ τ ρ α=( ) ≈ ( )1 1z z  reproduces the rarefaction-wave solution

� , ,ρ γ1 2 1z z( ) = +  thus requiring that the power index α satis-
fies α γ− +( ) ≈2 1 0.  This condition is identical to Eq. (22)
and does not represent an additional condition. Note that a
simple analytical solution of Eq. (21) is the following power
law:

ρ τ
γ

α γ αγ
τ

γ

γ

( ) =
−( )

+( ) −( )













+

+

2 1

1 1

1
2

1
1

2
1

. (25)

Equation (25) satisfies the initial conditions (23) and (24) only
if the following conditions are met:

F2 2

1
12 1

1 1
1α

γ

α γ αγ

γ
( ) ≡

−( )
+( ) −( )













≈
+

, (26)

F3 2

1
11

3

2 1

1 1

3

2 2 1

1

2
1

α
γ

α γ αγ

γ
γ

γ
γ

γ
( ) ≡

−( )
+( ) −( )













× +
−( )

+
−







 ≈

+

 . (27)

To test Eq. (20) against the remaining boundary conditions
(19) at z = 1, one needs to determine the solution for z > 1
carried out in the next section. In any case, the condition (22)
implies that α γ≈ +( )2 1 ,  indicating that the density profile
shape is little changed by the second relaxation occurring after
the shock�rarefaction merging.

b.  The region                    As mentioned earlier, the shock
decays for z > 1, τ   > 1. The entropy profile left behind by the
decaying shock is calculated in Ref. 1 and approximately
follows a power law of the Lagrangian coordinate m (or z):

� ,S z
z

( )  �
1
δ (28)

where δ � 1.31 when the effects of ablation are neglected
and the spatial range is limited to z < 10. Typically, the range
1 < z < 10 includes most (if not all) of the ICF RX target

1 < <z zs
p .
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designs for both OMEGA-like as well as NIF-like capsules.
However, if z > 10, the shock decay becomes self-similar and
the power-law index asymptotically approaches the value δ �
1.275. The residual ablation pressure leads to a somewhat
slower decay and can be accounted for through a lower δ
(approximately 17% lower) as indicated in Ref. 1. In the self-
similar solution, the density is a function of the coordinate

ξ =
z

zs
p , (29)

where zs
p  is the trajectory of the decaying shock, satisfying the

Hugoniot condition

ú .z
z

s
p

s
p

=
−

( )
γ

γ δ
1

2

1
(30)

Equation (30) can be easily integrated with the initial condi-
tion zs

p 1 1( ) = , leading to the following form of the deceler-
ating shock trajectory:

zs
p τ

δ γ
γ

τ
δ

( ) = + +







−
−( )











+
1 1

2

1

2
1

2
2

. (31)

The density �ρ ξ( )  does not follow a power law. Instead it must
satisfy a complicated second-order differential equation de-
rived by substituting Eqs. (16) and (28) into (17), leading to

ξ
ξ

δ
ξ

ξ ρ γ ξ

ρ

ξ

γ

δ
d

d

d

d

d

d
1

2

1 2

1
0

2

2+ +








 +

−
=

�

�
. (32)

Equation (32) cannot be exactly integrated; however, one can
again attempt to look for an approximate solution in the form
of a power law of the self-similar coordinate

� ,ρ ξµ≈ (33)

which approximately satisfies not only Eq. (32) but also the
boundary by conditions at z = 1 [Eqs. (19)] and at the shock
front z zs

p= .  In order for the simple power law (33) to approxi-
mate the solution of Eq. (32), the power index µ must satisfy
the following conditions obtained upon substitution of (33)

into (32):

G1
1

2
1µ

µ γ

δ
( ) ≡

+( )
+

≈ , (34)

G2

1 1
2

2 1
1µ

µ γ
δ

µ

µγ δ µγ δ
( ) ≡

−( ) + −







−( ) − −( )
≈ . (35)

The boundary conditions at the shock front are provided by the
Hugoniot conditions that determine �ρ  and d d�ρ ξ  at ξ = 1.
Note that the density gradient can be obtained from Eqs. (35b)
and (36) of Ref. 1 for ξ = 1, yielding the following condition:

d

d

�
.

ρ
ξ
ξ

δ
γ

=( ) =
+

1
3

1
(36)

While the Hugoniot condition on the density �ρ 1 1( ) =  is trivi-
ally satisfied by � ,ρ ξµ=  the condition on d d�ρ ξ  requires that

G3
1

3
1µ

µ γ

δ
( ) ≡

+( )
≈ . (37)

The next step is to verify that Eq. (33) used for z > 1 satisfies
Eqs. (19) at z = 1. Since the entropy is continuous at z = 1, the
first of Eq. (19) requires that the density be continuous;
therefore � , � , ,ρ τ ρ τ  z z=( ) ≈ =( )− +1 1  yielding

ρ τ
τ

µ( ) ≈
( )[ ]
1

zs
p

. (38)

Then, using the continuity of the density and Eqs. (28) and (33)
into the second of Eq. (19), one finds the condition

H α µ
γα δ
γµ

, .( ) ≡ +
≈1 (39)

The last step is to find the two power indices α and µ in such
a way that all the conditions [Eqs. (22), (26), (27), (34), (35),
(37), and (39)] are met and that Eq. (38) is approximately
satisfied for any time τ limited by zs

p τ( ) ≤10 representing
the range of interest for ICF capsule design.
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c.  Determination of the power indices.  The power indices
α and τ can be determined by plotting the conditions

G G G1 2 31 1 1µ µ µ( ) ≈ ( ) ≈ ( ) ≈, , ,      (40)

F F F1 2 31 1 1α α α( ) ≈ ( ) ≈ ( ) ≈, , ,      (41)

H α µ, ,( ) ≈1 (42)

and determining α and µ so that all such conditions are
approximately satisfied. Figure 98.44 shows the plot of three
functions G1, G2, and G3 that depends exclusively on the
power index µ for a given γ = 5/3 and δ � 1.315. Observe that
all the G-functions exhibit a zero near µ � 1.45, which can be
considered as an approximate solution of all the Eqs. (40).
After determining µ, the F-functions are plotted together with
the function H versus the parameter α (Fig. 98.45), clearly
indicating that α � 0.75 is an approximate solution of all
Eqs. (41) and (42). The last step is to verify that Eq. (38) is
approximately satisfied for any time τ and for zs

p ≤10.  First,
it is easily found from Eq. (31) that the condition zs

p ≤10
requires τ ≤ 61. Second, we plot both sides of Eq. (38) versus
time for τ ≤ 61 (Fig. 98.46) and realize that both functions are
approximately equal over the range of interesting times.
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Figure 98.44
The functions G1(µ) (solid), G2(µ) (dashed), and G3(µ) (dotted) are all
approximately equal to 1 at µ = 1.45.
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The functions F1(α) (solid), F2(α) (dashed), F3(α) (dashed�double-dotted),
and H(α,µ = 1.45) (dotted) are all approximately equal to 1 at α = 0.75.
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The analytic solution of Eqs. (21), (23), and (24) for ρ τ( )  given by Eq. (25)
(solid) is compared to the approximate solution for ρ τ( )  given by Eq. (38)
using µ = 1.45 (dashed). The plot indicates good agreement between the two
functional forms of ρ τ( ).
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In summary, all the equations of motions and boundary
conditions for τ > 1 are approximately satisfied by simple
power laws of the Lagrangian coordinate z, leading to the
following solutions for γ = 5/3:

ρ ρ
τ

ρ 
rf

z
z m

mp p<( ) ≈ 




=








1

3 4 3 4

, (43)

ρ ρ
τ

ρ
τ

 1

1 45 1 45

< <( ) ≈
( )









 =

( )









z z

z

z

m

m
s
p

p
s
p p

s
p

. .

, (44)

where ms
p  represents the trajectory of the prepulse shock

m z ms
p

s
p= ∗  and mrf = apρpt. Here t = 0 represents the end of

the prepulse. This concludes the calculation of the relaxed
profiles. The next step is to determine the adiabat shape
induced by the main shock propagating through the relaxed
profiles of the first and second kind described by Eqs. (18) and
[(43), (44)], respectively.

Main Shock Propagation Through the Relaxed Profiles
Before the prepulse shock reaches the rear surface, the main

shock is launched by the foot of the main laser pulse and
supported by the applied pressure Pf, which is assumed con-
stant during the main shock propagation. The adiabat shaping
occurs when the main shock travels up the relaxed density
profile, shocking material with increasing density to lower and
lower adiabats. The main shock is typically a strong shock in
the sense that the ratio of pressures across the shock front is
much larger than unity. Using the strong-shock form of the
Hugoniot relations leads to a great simplification of the hydro-
dynamic analysis and is often accurate for the main shock
propagation. However, it is important to emphasize that some
of the strong-shock Hugoniot relations are accurately satisfied
only for a very large pressure jump. For instance, the density
jump across a strong shock with Z P P P= −( ) >>2 1 1 1 is

ρ
ρ

γ
γ

γ

γ
2

1
2 2

1

1

4

1

1 1
=

+
−

−
−( )

+ 







Z
O

Z
. (45)

Observe that even for large Z, the first-order corrections can be
significant due to the large coefficient − −( )4 1 2γ .  For in-
stance, in a gas with γ = 5/3, this coefficient is �15 and the
leading order term is 4, thus indicating that the 1/Z correction
is small only when Z >> 15/4. Another implication of a strong

main shock is the fact that the shocked material evolves on the
time scale of its own sound speed, which scales as PM ,  where
PM is the main shock pressure. Instead, the relaxed profiles
evolve on a slower time scale of the order of the prepulse shock
sound speed, which scales as ~ .Pp  It follows that in the limit
of P PM p >> 1, one can neglect the dynamics of the relaxed
profiles during the main shock propagation. In other words,
one can regard the relaxed profiles as frozen in time while the
main shock propagates through. Obviously, the corrections
due to a finite P PM p  may be large and need to be estimated.

For the sake of simplicity, we will first proceed by neglect-
ing the finite main shock strength correction, assume that the
relaxed profiles are frozen, and determine the lowest-order
solution. The finite shock strength effects will be estimated
later as corrections to the lowest-order solution.

Effects of mass ablation and residual ablation pressures,
though important, are also neglected in this article, and the
calculation focuses on the ideal case of a strong shock sup-
ported by a constant applied pressure traveling up a relaxed
density profile described by the power laws (18) or [(43), (44)].

1. Shock Propagation Through a Relaxed Profile
of the First Kind

As indicated earlier in Relaxed Profiles of the First Kind
(p. 108), the density profile generated by a rarefaction wave
before its interaction with the prepulse shock is described by a
simple power law of the areal density ρ

α= ( )m mrf  with
α γ= +( ) =2 1 0 75. .  Here mrf = apρpt is the location of the
rarefaction leading edge. If the main shock is much stronger
than the prepulse shock, then the relaxed profile may be
considered as frozen in time during the fast main shock
propagation. Since both shocks must merge at the shell�s inner
surface, the fast main shock is launched when the prepulse
shock is approaching the inner shell surface. One can there-
fore approximate mrf ≈ mshell to lowest order in the inverse
shock strength.

a.  The approximation of a static relaxed profile.  Introduc-
ing the new variable ζ ≡ ≈m m m mrf shell ,  the relaxed pro-
file can be represented by the simple power law

ρ ρ ζ α
γ

α= p , ,   =
2

+1
(46)

with 0 < ζ < 1. To simplify the analysis, we introduce another
dimensionless variable related to the main shock location:
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ξ
ζ

ζ
= =

m

ms
M

s
M , (47)

where both ms
M  and ζ s

M  represent the main shock location in
their respective coordinates. Obviously, 0 < ξ < 1 with ξ = 1
representing the shock position. The profiles left behind by the
main shock can be written in terms of the variables ζ and ξ
in the following form:

ρ
ρ ζ

ξ ζ

α

γ γα=
( )

=M MS
S

Φ 1 , ,   (48)

P
P

u a
UM

M=
( )

=
( )

Φ ξ

ξ

ζα
, ,   2 (49)

where

ρ ρ γ γM p≡ +( ) −( )1 1 ,

P SM M M= ργ ,

a PM M M≡ γ ρ ,

and Φ(ξ), U(ξ), and SM need to be determined. By inspection
of Eqs. (48) and (49), it is clear that by setting Φ(1) = 1, the
pressure immediately behind the shock is PM. Furthermore,
using the Hugoniot condition for the post-shock velocity, one
can immediately deduce that U 1 2 1( ) = −( )γ γ . Substituting
Eqs. (48) and (49) into the equations of motion and using the
Hugoniot condition for the shock velocity,

ú ,m ps
M

M M s
M=

− ( )γ
ρ ζ

α1

2
(50)

it is straightforward to derive the two equations governing
Φ and U:

ξ
γ
γ ξ

α

ξ
ξ

ξ

γ

α
α−

− + =
−( )

1

2 2
0

1

1 2
2d

d

U dU

d

Φ
, (51)

γ γ
ξ

ξ ξ
α−( )

− =−( )1

2

1
01 2 dU

d

d

d Φ
, (52)

which need to be solved with the initial conditions Φ(1) = 1
and U 1 2 1( ) = −( )γ γ . The unknown SM can be determined
by requiring that the solution of Eqs. (51) and (52) reproduces
the applied pressure Pf at m = 0. Using Eq. (49), one finds
the following expression for SM and the pressure behind the
shock PM:

S
P

P PM
f

M
M f=

( )
= ( )

Φ
Φ

0
0

ργ
, .   (53)

Observe that the pressure behind the shock is constant through-
out the shock propagation. An approximate yet quite accurate
solution of Eqs. (51) and (52) can be found by using the
following ansatz:

Φ
Φ

Φ
ξ

ξ
( ) ≈ ( )

+ ( )−[ ]
0

1 0 1 
. (54)

Substituting Eq. (54) into (52) and using the boundary condi-
tion for the velocity at the shock front yields

U ξ
γ γ α

ξα( ) ≈
−( )

−
( )









 −( ) +













2

1
1

1

0

2
1 12

Φ
. (55)

The functions (54) and (55) must approximately satisfy
Eq. (51), which can be rewritten upon substitution of the two
functions as

2
2

0

1 1 0 1

01 2

1

− −
( )









 ≈

− ( )−
( )

( )−( )

+( )
α

ξ

γ
γ

ξ ξ
α

γ γ

Φ

Φ

Φ
Φ . (56)

Observe that since α < 2, the left-hand side of Eq. (56) is sin-
gular for ξ → 0 while the right-hand side is regular. It follows
that Eq. (56) can be satisfied only when 2 2 0 0− − ( ) ≈α Φ ,
leading to

Φ 0
2

2

1
1 6( ) ≈

−
=

+
=

α
γ
γ

. . (57)
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The numerical solution of Eqs. (51) and (52) yields Φ(0)
� 1.68 in good agreement with the analytic derivation. Fig-
ure 98.47 compares the numerically derived functions
p ≡ ( ) ( )Φ Φ0 ξ  (representing the pressure profile) and
u U≡ ( )ξ ξα 2  (representing the velocity profile) with the
analytic solutions from Eqs. (54), (57), and (55). Observe that
the pressure increases approximately linearly before the shock,
while the velocity profile is approximately flat. The shock
pressure is amplified about 1.6 to 1.7 times with respect to the
applied pressure. This amplification is due to the slowing
down of the shocked material against the shock front. The
shock-front velocity decreases in time as a power law. It can be
easily derived by first determining the shock trajectory in the
mass coordinate through Eq. (50) and then substituting the
post-shock velocity ups calculated at the shock front [Eq. (49)
at ξ = 1 and m ms

M= ] into the shock relation

U ushock ps= +( )[ ]γ 1 2 .

This leads to the following expression for the shock velocity:

U

a

a t
m

M

M M

shock

shell

=

+( )
−( )

− −









−( )

γ

γ γ

γ
γ

α ρ
α α

1

2 1

1
2

2
2

2

2
,

(58)

which decreases as 1/t0.6 for α γ= +( ) =2 1 0 75. .

Furthermore, as indicated by Eqs. (48) and (53), the entropy
profile behind the main shock follows a simple power law of
the mass coordinate

S m
P m

m
f

M
( ) =

( ) 





Φ 0

ρ γ

γα
shell , (59)

where the rarefaction leading edge mrf has been taken near the
inner surface at mrf = mshell and α γ= +( )2 1 . Indeed, it is
important to require that the main shock, the rarefaction
leading edge, and the prepulse shock merge at the target�s rear
surface, leading to mrf � mshell � m*. This timing requirement
is discussed in the Introduction (p. 106), where the optimized
adiabat shaping procedure is described. Figure 98.48 shows
the simulated adiabat profile generated by a strong shock
driven by a 26-Mbar applied pressure traveling up a relaxed
target with a density profile represented by the following
power law:

ρ ρ
α ρ

α
α

=
−( )








−

p
px

m

1 1

shell
, (60)

where 0 1< < −( )x m pshell α ρ  is the spatial coordinate. Ob-
serve that the profile in Eq. (60) requires that α < 1 to avoid
singularities at x = 0 (here α = 0.75). Note Eq. (60) can be
easily rewritten in terms of the mass coordinate m leading
to ρ ρ α= ( )p m mshell , which is identical to Eq. (18) with mrf
= mshell. The solid curve of Fig. 98.48 represents the adiabat
from the 1-D simulation, while the dashed curve is obtained
from the analytic theory in Eq. (59). Observe that the two
adiabat profiles are virtually identical, indicating excellent
agreement between theory and simulations.

Figure 98.47
The numerical (solid) and analytic (dashed) solutions of the self-similar
(a) pressure profiles p ξ( ) and (b) density profile ρ ξ( )  are shown to be in
relatively good agreement.
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b.  Corrections due to dynamic relaxed profiles/finite shock
strength.  The analytic theory above has been derived in the
limit of a relaxed profile that is stationary during the shock
propagation. However, the profile varies in time as the leading
edge of the rarefaction wave travels toward the shell�s inner
surface. Because of these changes, the resulting adiabat profile
left behind by the main shock is somewhat shallower than the
one predicted by Eq. (59). One can estimate the effects of
dynamic profiles on the adiabat shape by assuming that the
relaxed profile changes slightly over the main shock propaga-
tion interval. The dynamic corrections to the entropy profiles
can be estimated by determining the entropy at the shock front
located at m ts

M( ):

S m
P

s
M

M

M
( ) =

( )
ps

psρ
γ , (61)

where PM
ps  and ρps

M  are the post-shock pressure and density at
the main shock front, respectively. It is obvious that if one can
rewrite the right-hand side of Eq. (61) as a function of the shock
position, then the entropy profile is given by the RHS with ms

M

replaced by m. The post-shock density in Eq. (61) can be

rewritten in terms of the pre-shock density at the shock front
ρbs

M  including the linear corrections in the inverse shock
strength:

ρ
γ
γ

ρ
γ

γ

γα

ps bs
shell

  M M p

M

s
MP

P

m

m
�

+
−

−
−

























1

1
1

4

12 , (62)

where the post-shock pressure used to calculate the correc-
tion of order P Pp M  has been taken equal to the zeroth-
order solution PM. Because of the large numerical coeffi-
cient 4 12γ γ −( ),  the first-order correction in the inverse
shock strength shown in Eq. (62) needs to be retained. An-
other important correction is in the pre-shock density
ρ ρ α

bs rf= ( )p m m ,  which varies in time due to the evolution
of the rarefaction leading edge mrf, which can be written as

m m a t t tp p s
M

frf shell= − + −( )ρ ∆ , (63)

where ∆ts
M  is the travel time of the main shock through the

shell and tf is the beginning time of the laser foot when the main
shock is launched. Observe that the second term on the right-
hand side represents the correction to mrf and is small as long
as the main shock is strong. This can be quantified by calculat-
ing ∆ts

M  after integrating Eq. (50) and setting mrf � mshell into
the variable ζ. A straightforward calculation yields

∆t
m

as
M

M M
�  shell2

1

2

2

γ
γ α ρ− −

(64)

and t t t m mf s
M

s
M−( ) = ( ) −

∆ shell
1 2α

.  Substituting Eq. (64)
into (63) leads to the following equation for the rarefaction
leading edge in terms of the main shock location:

m m
P

P

m

m
p

M

s
M

rf shell
shell

= −
− +

−










































−

1
2

2

2

1
1

2
2

α
γ

γ

α

. (65)

Observe that the correction to mrf is of the order of P Pp M

as indicated in the introduction of Main Shock Propagation
Through the Relaxed Profiles (p. 112) and can be significant
even for a strong main shock. It follows that the post-shock
density used in Eq. (61) can be rewritten, including the relevant
corrections, in the following form:
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Figure 98.48
A comparison of the simulated (solid) and analytically calculated [Eq. (59)]
(dashed) adiabat shapes generated by propagating a shock supported by a
constant 26-Mbar pressure through a density profile of the first kind shows
excellent agreement.
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ρ ρ

γ

γ

α
γ

γ

α

γα

α α

ps
shell

shell

shell

M
M

s
M

p

M

s
M

p

M

s
M

m

m

P

P

m

m

P

P

m

m

=










×

−
−











−
− +

−












































−

1
4

1

1
2

2

2

1
1

2

2

2

. (66)

The next step is the calculation of the dynamic correction to the
post-shock pressure in Eq. (62). While the exact calculation of
such corrections can be cumbersome, a fairly good approxima-
tion can be obtained by assuming that the post-main-shock
pressure profile is linear in the mass coordinate:

P P A t
m

m t
f

s
M≈ + ( )

( )













1 , (67)

where A(t) needs to be determined. It is important to notice
that in the static relaxed profile case, A(t) was previously
determined to be approximately constant with A(t) ≈ A0 ≈
α/(2 � α)  It follows that the dynamic corrections will lead to
a change in A(t), which can be rewritten as a small correction
to A0 such as

A t A A t( ) = + ( ) + ⋅ ⋅ ⋅0 δ , (68)

where δA << A0 needs to be determined. An important dy-
namic correction enters the Hugoniot relations for the velocity
jump across the main shock

u u
PM M

M

Mps bs
ps

bs
= +

+
2

1γ ρ
, (69)

where uM
bs  is the pre-shock velocity at the shock front given by

the standard rarefaction-wave solution

u a
m

m
M

p
s
M

bs
rf

=
−









 +

−( )
−

−















−
α
α γ γ γ

α

1

2

1

2

1

1

. (70)

Observe that ubs represents a correction of the order of P Pp M

in the Hugoniot relation [Eq. (69)] and can be evaluated using
the lowest-order form of mrf � mshell. Instead, the pre-shock
density ρ ρ α

bs rf
M

b s
Mm m= ( )  in Eq. (69) needs to include the

lowest-order corrections for mrf given in Eq. (65). Conserva-
tion of momentum requires that the acceleration balances the
pressure gradient at the shock front leading to

∂

∂
= −

∂
∂








u

t

P

m

M

ms
M

ps . (71)

Substituting Eqs. (67)�(70) into (71) yields the following
ordinary differential equation for δA:

d

d
A

P

P
b

Mη
η δ

α
α

γ
γ

γ γ η

α

α

2

2
3
2

2

2

2

1
2 1

−

−

( ) = −
−

×
+

+ +( )








 , (72)

where η ≡ m ms
M

shell .  Equation (72) can be integrated using
the initial condition that δA ms

M =( ) =0 0, leading to the fol-
lowing final form of the post-shock pressure at the shock front:

P P
P

P
M

M
p

M
ps

 

= −
−( )







×
+

+ +( )
















−

1
2

3 2

2

1
2 1

1
2

α
α

γ
γ

γ γ η
α

. (73)

Observe that the corrections due to finite main shock strength
cause the main shock pressure to decrease as the shock propa-
gates through the dynamic relaxed profile. This clearly leads to
a gentler decrease in entropy.

The last step is to substitute Eqs. (66) and (73) into (61) and
derive the final form of the adiabat shape:
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S m S
m

m

m
m

( ) = 















( )
+

in
shell shell

2
1

1

γ
γ

χ

χ
, (74)

where

S c
Pf

in =
−( ) ( )

+( ) −0

2

2 1
0

1 1

1

γ χ

γ γ ρ

γ

γ γ (75)

is the entropy on the inner shell surface, c0 = 1.68/1.6 = 1.05 is
a corrective factor to account for the analytical approximation
used in Eq. (54), and ρ0 is the initial shell density.

The function χ(x) represents the corrections due to the finite
main shock strength

χ
γ
γ

γ
γ

γ

γ γ

γ
γ

γ
γ

γ
γ

γ

x
Pp
Pf

x

P

P
x

P

P
x

p

f

p

f

( ) = −
+
+

+


















×

− −






























−
+( ) −( )

















+
+

+

1
2 2

3

2

1
1

1
2

1

1
4

1 1

1

2

1

2

2

2

1

, (76)

where the relation α γ= +( )2 1  has been used and P Pp f  is
the ratio of the prepulse pressure to the pressure of the foot of
the main pulse. This concludes the analysis of the main shock
propagation through a relaxed profile of the first kind. The next
step is to investigate the main shock propagation through
relaxed profiles of the second kind and determine the resulting
adiabat shape.

2. Shock Propagation Through a Relaxed Profile
of the Second Kind

In the case of a short prepulse, the rarefaction wave catches
the shock at m = m* before the inner surface (m < mshell), and
the shock decays until it reaches the inner surface at m = mshell.

As described in Relaxed Profiles of the Second Kind (p. 108),
the relaxed profile for γ = 5/3 is well-approximated by two
power laws of the mass coordinate: ρ ~ m0.75 for m < m* and
ρ ~ m1.45 for m* < m < mshell. The analysis of the main shock
propagation through such a profile is vastly more complicated
with respect to the case of the single power-law profile dis-
cussed in Shock Propagation Through a Relaxed Profile of
the First Kind (p. 112). An approximate analytic solution can
be found, however, by assuming that the pressure profile
behind the main shock is linear in the mass coordinate. Similar
to the case of profiles of the first kind, we will first consider the
approximation of infinite main shock strength and static re-
laxed profiles. The corrections due to the finite shock strength
and dynamic profiles are estimated a posteriori as small
perturbations of the zeroth-order solution.

a.  The approximation of a strong shock and a static relaxed
profile.  In the static case, the relaxed profile in the region m
< m* is identical to the profile of the first kind, leading to a
pressure profile behind the shock that linearly increases about
60% with respect to the applied foot pressure Pf. Once the main
shock enters into the second region m* < m < mshell, an exact
analytic solution cannot be found. A careful analysis of the
numerical simulation indicates, however, that the pressure
profile behind the shock remains approximately linear in the
mass coordinate. In contrast with the behavior in the first
region, however, the shock-front pressure is not constant while
the pressure at m* varies slightly around the value ωPf with
ω � 1.5 to 1.6 for γ = 5/3. Thus, it makes sense to look for a
solution of the hydrodynamic equation with a linear pressure
profile of the following form:

P m m P D t
m

mps foot>( ) ≈ ( ) + ( ) −






















∗
∗

ω γ 1 1 , (77)

where ω(γ) is a constant that must be chosen to reproduce the
pressure at the time when the main shock reaches m*. Using the
results of the previous section for the main shock propagation
for m < m*, one can conclude that

ω γ
γ
γ

( ) ≈ +1
. (78)

Similar to the analysis in Shock Propagation Through a
Relaxed Profile of the First Kind (p. 112), Eq. (77) can be
substituted into the momentum equation at the shock front
∂ = − ∂( )[ ]t m m

u P
s
Mps ,  where the post-shock velocity at the
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shock front is given by the Hugoniot relation

u PM M
ps ps bs

M= +( )2 1γ ρ

with the pre-shock density at the shock front given by

ρ ρ
µ

bs
shell

M
p

s
Mm

m
=









 , (79)

where the prepulse shock location m p
sh  has been assumed to

have reached the inner shell surface so that m ms
p  shell� .  As in

Shock Propagation Through a Relaxed Profile of the First
Kind (p. 112), uM

ps  and PM
ps  represent the post-shock velocity

and pressure at the main shock front. The resulting shock-front
momentum equation can be simplified by using the main shock
trajectory m ts

M ( )  as the time coordinate and by using the shock
mass velocity ú .m Ps

M M M= +( )γ ρ1 2ps bs  A straightforward
manipulation of the momentum equation leads to the following
simple differential equation for D:

dD

dz
z D

z
D z

s
M s

M

s
M s

M−( ) + − + −( )[ ] =1 3 1 1 0
µ

, (80)

where D D zs
M= [ ] and z m t ms

M
s
M≡ ( ) ∗ .  It is important to

note that the only nonsingular solution of Eq. (80) has the
simple form

D x
x x x x

x
( ) =

−( ) + −( ) −( )− −( )

−( ) −( ) −( )

2 1 3 1 1

2 1 1

2 2

3

µ µ µ

µ µ
. (81)

The pressure at the shock fronts can be determined from
Eq. (77) upon substitution of Eq. (81), leading to

P m P D
m

m

m

m
M

s
M

f
s
M

s
M

ps  ( ) ≈ ( ) +








 −




















∗ ∗

ω γ 1 1 , (82)

representing a growing function of ms
M  reaching the asymp-

totic value of 3.6 for m ms
M >> ∗. The entropy behind the shock

can be easily calculated by substituting the pressure and
density at the shock front into the definition of the entropy:

S m
P m

m
s
M

M
s
M

M
s
M

( ) =
( )

( )[ ]
ps

psρ
γ . (83)

Using Eqs. (77), (81), and (82) into (83) leads to the following
form of the entropy:

S m m m
P

m

m
D

m

m

m

m

f

M
∞

∗ ∗

< ≤( ) =
( )

× 





+








 −






















*

,

shell

shell

ω γ

ργ

γµ
1 1 (84)

where ρ ρ γ γM p= +( ) −( )1 1  and the subscript ∞ indicates
that Eq. (84) is valid only for infinite main shock strength.
Figure 98.49 shows a comparison of the predicted adiabat
profile of Eq. (84) (dashed) with the simulated adiabat profile
(solid) generated by a strong shock driven by a 26-Mbar
applied pressure traveling up a static, relaxed target with a
density profile given by ρ ρ µ α= ( ) ( )∗ ∗M m m m mshell  for
m ≤ m*, and ρ ρ µ= ( )M m mshell  for m* < m ≤ mshell. Here,
m m∗ shell  is chosen to be 0.05. The theory again shows
excellent agreement with the simulation.
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Figure 98.49
A comparison of the simulated (solid) and analytically calculated [Eq. (84)]
(dashed) adiabat shape generated by propagating a shock supported by a
constant 26-Mbar pressure through a density profile of the second kind shows
excellent agreement.
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It is interesting to observe that the linear approximation for
the pressure profile leads to a flat velocity profile as shown by
substituting Eq. (77) into the momentum equation, yielding

u m t u tM, .( ) = ( )ps (85)

The density behind the shock can be determined from the
pressure and the entropy through the relation ρ γ= ( )p S 1 .
Upon substitution of the density, the mass conservation equa-
tion [Eq. (4)] can be solved for the velocity profile, leading to

u m t u G z zM
s
M, , ,( ) = − ( )[ ]ps 1 (86)

where z m m= ∗  and

G z z
dD z

dz

x D x x

D z x
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M s
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s
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z

s
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s
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.
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− ( )

×
−( ) + ( ) −( )[ ]
+ ( ) −( )[ ]
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
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γ
γ

γ

γ γ

µ

1

2

1 1 1

1 1

1

1
 (87)

Observe that the two velocity profiles obtained from the
momentum and mass conservation equations are approxi-
mately equal in magnitude as long as G << 1. The value G
can be estimated after replacing z with ηzs

M  and by plotting
G z zs

M
s
Mη ,( )  for 1 1zs

M < <η  for different values of zs
M .

Figure 98.50 shows the value of G for zs
M  = 2, 5, 10, 20,

indicating that G does not exceed 0.21 for typical values of
zs

M ≤ 20. It follows that the linear pressure profile of Eq. (77),
the flat velocity profile of Eq. (85), and the entropy profile of
Eq. (84) are accurate approximations of the solution to the
hydro equations.

b.  Corrections due to dynamic relaxed profiles/finite shock
strength.  To determine the correction to the adiabat shape due
to the finite shock strength and the dynamic evolution of the
relaxed profile during the main shock propagation, one needs
to calculate the main shock position in terms of the prepulse
shock location. Both the main shock ms

M  and the prepulse
shock positions ms

p  are governed by the Hugoniot relations

ú ,m P
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m
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M
f M

s
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1 1 (88)
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ρ
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1

2
(89)

where δ � 1.315. Replacing the time variable with m ts
p ( ) into

Eq. (88) leads to the following algebraic equation relating the
main and the prepulse shock location:

z z
P

P

z z
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p p

f

s
M

( ) − =
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+ ( )

× ( )− ( )[ ]

β β β
γ

γ ω γ

σ σ

shell

shell 

2 1

1

, (90)

where β δ µ= − +( )2 2, z m ms
p

s
p= ∗ ,  z m mshell shell= ∗ ,

and
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Figure 98.50
Plots of G z zs

M
s
Mη ,( )  for zs

M = 2, 5, 10, 20 (dotted, dashed, dash�dotted, and
solid lines, respectively) show that G does not exceed 0.21 for typical values
of zs

M ≤ 20.
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σ ξ
µ ξ µ ξ

µ µ

µ µ

( ) =
−( ) − −( ) +

−( ) −( )

− −2 1 1

2 1

1 2

. (91)

It is important to recognize that Eq. (90) has been derived
using the condition that z zs

p = shell  when z zs
M = shell .  This is

an essential constraint requiring that both the prepulse and
main shock merge on the shell�s inner surface. Observe that
Eq. (90) can be used to find zs

p  in terms of zs
M . An analytic

form of zs
M  in terms of zs

p  can also be found by approximating
µ � 1.45 and reducing Eq. (90) to a second-order algebraic
equation for zs

M .

Similar to the analysis in Shock Propagation Through a
Relaxed Profile of the First Kind (p. 112), we estimate the
dynamic corrections to the entropy profile by rewriting the
entropy at the main shock front:

S z
z

z

P z t
s
M s

p

s
M

M
s
M

M
( ) =











( )µγ

γρ

ps ,
. (92)

Since we did not find an exact solution of the post-shock
pressure for the static case, it is not worth calculating small
corrections to an already inexact solution. Nevertheless, we
retain the corrections due to the dynamic evolution of the
relaxed profile. These corrections require including the time
dependence of zs

p  in the pre-shock density. We speculate that
the largest corrections to the entropy are likely to come from
such dynamic effects. This consideration is supported by the
large power index µγ � 2.4 for zs

p  in Eq. (92) and the finite
shock strength corrections of the order of P Pp f  in Eq. (92)
for zs

p .  It follows that the dynamic corrections to the entropy
profile can be determined by substituting zs

p  from Eq. (90) into
Eq. (92) and by replacing zs

M  with z m m= ∗ . A straightfor-
ward manipulation leads to the following form of the entropy
profile:
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 , (93)

where S∞ is given in Eq. (84). Observe that dynamic correc-
tions to the adiabat shape lead to a shallower profile.

Conclusion
We have derived analytical forms of the relaxation adiabat

shapes for (1) the case where the prepulse is long enough that
the rarefaction wave catches the prepulse shock at the rear
surface of the shell, and (2) the case of short prepulses, where
the mass undertaken by the unattenuated prepulse shock is less
than the total mass of the shell. The analytic relaxation adiabat
profiles derived here are in excellent agreement with simula-
tion. In addition, we have shown that relaxation designs with
short prepulses lead to steeper adiabat gradients than decaying
shock designs. The effects of mass ablation and residual
ablation pressure on relaxation adiabat shapes will be analyzed
in a future article.
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Appendix A:  Relaxed Density Profiles in Real Space

A better understanding of the relaxed profile shape can be
obtained by converting the profile functions from the Lagrangian
coordinate m to the spatial coordinate x. Equation (3) relating
the mass to the initial density is also valid if the initial density
is replaced by the density at time t as long as the lower limit
and upper limit of integration are the trajectory of the outer
surface xout(t) and the trajectory of generic fluid element x(t).
It follows that the conversion between mass and real space is
straightforward once the relation between m and x is rewritten
in the differential form

dm

dx
x t= ( )ρ , . (A1)

Equation (A1) is then used to rewrite the profiles of the first kind
[Eq. (18)] and second kind [Eqs. (43) and (44)] in real space.

1. Relaxed Profiles of the First Kind

In the case where the shock and rarefaction merge at the
inner shell surface, one can substitute Eq. (A1) into (18) and
find the density profile shape in real space:

ρ ρ
γ
γ

γ
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−
+
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

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





−

p
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x x

a t

1

1

2
1

out , (A2)
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where xout is the trajectory of the outer shell surface coinciding
with the trailing edge of the rarefaction wave moving away
from the shell with the escape velocity 2 1ap γ −( ).  The range
of x in Eq. (A2) is limited by the trailing and leading edge of
the rarefaction wave. Since the leading edge travels inside the
shell with the sound speed, the range of x is limited by xout
< x < xout + apt. Note that t = 0 at the time when the prepulse
ends and the rarefaction is launched. Equation (A2) indicates
that, in real space, the density profile is a simple power law of
the distance from the rarefaction trailing edge. The leading
edge of the rarefaction wave reaches the prepulse shock at the
inner shell surface (m* = mshell) at the time

t
m

a

d

ap p p
shell

shell shell=
( )

=
−
+ρ

γ
γ

1

1
, (A3)

where dshell is the initial shell thickness and mshell = ρ0dshell
is the total shell mass. At this time, the density profile is simply

ρ ρ
γ

t t
x x

dp=( ) =
−









−
shell

out

shell

2
1

. (A4)

Note that the profile extends over a distance equal to the
uncompressed shell thickness dshell and approaches the com-
pressed density ρp on the shell�s inner surface located at
xin = xout + dshell.

2. Relaxed Profiles of the Second Kind

By defining with x*(τ) the trajectory of the Lagrangian point
corresponding to the fluid element where the prepulse shock
and rarefaction wave interact (i.e., m = m*), and with xs

p τ( ) the
location of the prepulse shock after the interaction, the spatial
density profile for the region x x xs

p
∗( ) < < ( )τ τ  can be ob-

tained by substituting Eq. (A1) into Eq. (44), leading to
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, (A5)

where µ = 1.45 for γ = 5/3. By defining with x x∗ ∗≡ ( )1  the
initial position inside the shell of the shock�rarefaction inter-
action point, it is straightforward to show that

x x zs
p

s
pτ τ( ) = ( )∗ , (A6)
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4 1
, (A7)

where zs
p  is given in Eq. (31). Equation (A5) represents the

spatial density profile of the shell portion between the shock�
rarefaction merging point and the shock front. The density
profile of the remaining portion between the shock�rarefaction
merging point and the outer shell surface is described by
Eq. (43) and in real space can again be determined by integrat-
ing Eq. (43) upon substitution of Eq. (A1). The result is similar
to the density profile of the first kind and yields

ρ ρ
γ
γ

γ
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a t

1

1

2
1

out . (A8)

It is important to emphasize that the density profiles [Eqs. (43)
and (44)] are approximate solutions; therefore, the profiles
[Eqs. (A5) and (A8)] are also approximate solutions. The
location of the rarefaction trailing edge (or outer shell surface)
cannot be exactly calculated because it is affected by the sound
waves traveling down from the point of shock�rarefaction
interaction. An approximate form of xout can be derived by
requiring that the density is continuous at x = x*(τ), thus
setting Eq. (A8) equal to Eq. (A5) at x*(τ). This leads to the
following form of xout:

x x x
a

z

p

s
p

out = ( )−
( )

∗ ∗ −( )τ
τ

τ
µ γ 1

2

. (A9)

Observe that, in real space, the density profile is represented by
two very different functions of x: Eq. (A5) describes the profile
behind the shock, and Eq. (A8) describes the profile behind the
rarefaction�shock merging point.
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