
THEORY OF LASER-INDUCED ADIABAT SHAPING IN INERTIAL FUSION IMPLOSIONS: THE DECAYING SHOCK

LLE Review, Volume 95 147

Introduction
In inertial confinement fusion (ICF),1 a cryogenic shell of
deuterium and tritium (DT) filled with DT gas is accelerated
inward by direct laser irradiation (direct drive) or by the x rays
emitted by a laser-illuminated enclosure of high-Z material
(indirect drive). In the shell frame of reference, the accelera-
tion points from the heavy shell toward the hot ablated plasma,
making the shell�s outer surface unstable to the well-known
Rayleigh�Taylor (RT) instability.2 In indirect-drive ICF, the
high uniformity of the blackbody x-ray radiation results in a
negligible level of imprinted perturbations on the shell�s outer
surface. Indeed, the seeds of the Rayleigh�Taylor instability
are mostly provided by the capsule�s surface roughness. In
direct-drive ICF, the laser-beam intensity is not spatially uni-
form, and the direct illumination of the shell leads to high
levels of laser imprinting that seed the RT instability. The use
of random phase plates3 (RPP�s) has successfully shifted the
spectrum of laser nonuniformities toward short wavelengths,
and the implementation of either smoothing by spectral disper-
sion4 (SSD) or induced spatial incoherence5 (ISI) has provided
significant smoothing by modulating the intensity speckle
pattern in both space and time. Despite these important ad-
vances in smoothing techniques, the current level of imprint-
ing in direct-drive ICF is still sufficiently large to substantially
reduce the performance of low-adiabat implosions on the
OMEGA laser and high-gain implosions on the National Igni-
tion Facility (NIF).6

Since the perturbations seeded by laser imprinting grow
exponentially in time during the acceleration phase, it is
possible to reduce the RT-induced shell distortion by mitigat-
ing the growth rates of the RT instability. The RT growth rates
for an all-DT capsule are reduced with respect to the classical
value by the well-known ablative stabilization,7�11 leading
to10

G � 0 94 2 7. . ,kg kVa- (1)

where G is the growth rate, g is the shell acceleration, Va is the
ablation velocity, and k is the instability wave number. The
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ablation velocity represents the speed of propagation of the
heat front inside the shell material and can be defined as the
ratio of the ablation rate úm  and the shell�s outer surface (or
ablation front) density rout, leading to
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The ablation rate úma  follows a power law of the laser
intensity ú ~ ,m Ia L

1 3( )  while the ablation-front density can be
written in terms of the shell entropy and ablation pressure Pa:
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where Sout is the entropy calculated inside the shell near the
ablation front. Using the scaling of the ablation pressure with
respect to laser intensity, P Ia L~ ,2 3  and the definition of the
normalized adiabat in DT, a r∫ ( ) ( )P gMbar cm2 18 3 5 3

. ,
the ablation velocity depends on the laser intensity IL and
ablation-front entropy:

V Ia L~ .aout
3 5 1 15- (4)

Note that a ~ S. Because of the weak dependence on the laser
intensity, one concludes that the ablation velocity depends
almost exclusively on the shell adiabat at the outer surface
aout. In standard target design, the shell entropy is set by the
initial strong shock launched when the laser is turned on,
yielding a flat-adiabat profile inside the shell. During the
acceleration phase, a significant portion of the shell is ablated
off, while the remainder coasts inward at a constant velocity
once the laser is turned off. When the pressure builds up inside
the hot spot, the shell decelerates as its kinetic energy is used
to compress both the enclosed hot spot and the shell itself. It is
well known that the shell kinetic energy required to compress
the hot spot to ignition conditions is roughly proportional to
the square of the unablated shell adiabat:12�14
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e aK
ig

inn~ ,2 (5)

where eK
ig  is the kinetic energy required for ignition and ainn

is the normalized adiabat of the inner (unablated) portion of
the shell at the end of the acceleration phase. In addition, the
energy required to achieve the maximum yield12 is also a
strong function of the in-flight adiabat:

e aK
max gain

inn~ ,. .1 6 0 2± (6)

showing that high-adiabat implosions require greater
kinetic energy.

In standard ICF target designs, the shell�s entropy profile is
flat throughout the shell such that ainn = aout. Since large shell
adiabats improve stability while lowering the gain, it has been
common practice to look for a compromise between stability
on the one hand and gain on the other by choosing an interme-
diate optimized value of the adiabat. It is important to recog-
nize, however, that target gain and stability depend on the local
values of the adiabat at different locations in the shell. It
follows that high gain and improved stability can indeed be
achieved simultaneously by shaping the adiabat inside the
shell to maximize the ablation-front adiabat aout for better
stability and to minimize the inner-surface adiabat ainn for
higher gain. Though the benefits of adiabat shaping have been
recognized by target designers for quite some time, it has not
been clear how to implement it. The first mention of adiabat
tailoring is in Ref. 15, where it was speculated that adiabat
shaping could be induced by the interaction of soft x rays with
an ablator material having multiple absorption lines and radia-
tion penetration depths. The first target design16,17 of radia-
tion-induced adiabat shaping makes use of the x rays produced
by a thin gold overcoat and by the carbon radiation in a wetted-
foam ablator. Even though such a clever design can produce the
desired shaping, significant complications arise from the tar-
get-manufacturing aspects, based on wetted-foam technology.

It was later recognized that adiabat shaping can also be
induced by modifying the foot of the laser pulse. Two different
techniques were proposed: (1) adiabat shaping via a decaying
shock (DS)18 and (2) adiabat shaping via relaxation (RX).19

Adiabat shaping via a decaying shock relies on the entropy
profile left behind by a strong unsupported shock that is
launched by an intense laser prepulse. The prepulse is imme-
diately followed by a lower-intensity foot, which slowly evolves
into a high-power main pulse. The strong shock launched by

the intense prepulse decays after the laser power is lowered to
the foot intensity. As the strong shock starts to decay, it leaves
behind a shaped-adiabat profile that has its maximum at the
ablation front and minimum on the shell�s inner surface. Fig-
ure 95.8 shows snapshots of the normalized pressure profile
behind a decaying shock (dashed curves) at different times for
a 28-Mbar prepulse applied for 75 ps to a DT slab of 100-mm
thickness. The solid line represents the adiabat profile left
behind by the decaying shock. All the profiles are plotted
versus the normalized areal-density coordinate of the foil.
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Figure 95.8
Normalized adiabat (solid) near breakout and pressure (dashed) at 100 ps,
300 ps, 600 ps, and 1600 ps for a 75-ps, 28-Mb prepulse.

Adiabat shaping by relaxation also relies on a prepulse
launching a decaying shock. The prepulse intensity is much
lower, however, than the DS case because the resulting decay-
ing shock is not meant to shape the adiabat but to relax the
density and pressure profiles. Indeed, the RX technique re-
quires that the laser power is turned off after the prepulse to
allow the shell to decompress and establish relaxed density and
pressure profiles. RX adiabat shaping occurs later when the
high-intensity foot of the main laser pulse drives a strong shock
through the relaxed profiles. As the main shock propagates, it
encounters the increasingly larger pressures of the relaxed
profiles, causing its strength to decrease, thus leaving behind
a shaped-adiabat profile with its maximum at the ablation front
and its minimum on the inner surface. Because of the low-
power prepulse, the RX technique can be easily implemented
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on existing laser systems. Furthermore, the high-power foot of
the main pulse leads to a low contrast ratio, better conversion
efficiency, and therefore more energy on target.

This article is primarily concerned with a detailed theoreti-
cal treatment of laser-induced adiabat shaping by a decaying
shock. Here, based on the results of Refs. 18 and 19, we assume
that adiabat shaping has a stabilizing effect and focus on the
decaying shock evolution. The decaying shock analysis pre-
sented here is based on analytical and numerical solutions of
the gasdynamic model equations. The adiabat shape is first
derived for an ideal case of a shock driven by an applied
pressure in the form of a step function in time. The analytic
results in the ideal case are derived using an asymptotic
matching formula based on a local analysis at the rarefaction�
shock interaction point and the asymptotic self-similar solu-
tion.23�28 The ideal adiabat shape reproduces the numerical
results very accurately over the entire DS evolution as long as
the shock front remains in the strong shock regime. When
compared with other theoretical predictions, we find that even
though the ideal adiabat shape is in qualitative agreement with
Ref. 18, its magnitude is quite different and closer to the
standard self-similar solution with an appropriate proportion-
ality constant. The nonideal effects of finite mass ablation and
finite residual ablation pressure are evaluated, and the result-
ing corrections on the adiabat shape are calculated. It is found
that the most important correction comes from the residual
pressure caused by the finite heat capacity of the coronal
plasma, which slows down the ablation-pressure decay when
the laser intensity is suddenly lowered. A convenient form of
the adiabat shape is derived for carrying out detailed compari-
sons with the results of full one-dimensional (1-D) simulations
using available ICF codes. The agreement between theory and
full 1-D simulations is quite remarkable, indicating that the
theoretical predictions can be used for target design purposes.

Lagrangian Hydrodynamics
As is often the case for complicated dynamical problems in

gasdynamics, the analysis is greatly simplified by adopting a
Lagrangian frame of reference, where the independent spatial
coordinate is the mass areal density

m x dx
x= ¢( ) ¢Ú r , .0
0

(7)

In this coordinate, the outer shell surface is represented by
x = 0 and m = 0. For simplicity, we calculate for the case of an
ideal gas with adiabatic index g and neglect convergence
effects on the basis that the adiabat shaping occurs when the

inner shell surface has not yet moved and the initial aspect ratio
is sufficiently large that the shell can be approximated by a
uniform slab.

In the Lagrangian frame, the equations of motion for the
shocked material can be written in the following conservative
form:

∂
∂

- ∂
∂
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, (8)
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g 1 2

0
2
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governing conservation of mass, momentum, and energy,
respectively. In the absence of shocks, the energy equation can
be simplified, yielding the isentropic flow condition

p S m= ( )rg , (11)

where S(m) is referred to as the adiabat or entropy function,
which depends exclusively on the Lagrangian coordinate.
Equation (11) is valid only for isentropic flow and therefore
does not apply across the shock front. At the shock front, the
solution of Eqs. (8)�(10) must satisfy the Hugoniot conditions
obtained by rewriting Eqs. (8)�(10) in the shock frame of
reference and integrating across the shock front. A straightfor-
ward calculation leads to the following jump conditions at the
shock:

u
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ú
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Equations (12)�(14) can be simplified in the strong shock
regime, yielding the simple relations for the areal density
overtaken by the shock (ms), the post-shock density rps, and
velocity ups:

r g
g

rps =
+
-

1

1 0 , (15)

u
ms

ps
ps

=
-
2

1g r
ú

, (16)

ú ,m ps =
-( )g

r
1

2 ps ps (17)

where pps represents the post-shock pressure. In the sections
that follows, Eqs. (8), (9), and (11) and (15)�(17) are solved to
determine the dynamics of the shock-induced adiabat shaping.

The General Problem of the Decaying Shock
Our analysis begins with the study of the propagation of a

decaying shock driven by a constant pressure applied over a
time interval Dtprep. At first, we neglect all nonideal effects
such as laser ablation and model the laser with a pressure
applied on the outer shell surface. The general characteristics
of a decaying shock are summarized below.

A uniform strong shock is launched by the ablation pressure
p Pa*

= prep  applied during the prepulse. Here we consider the
case of a square prepulse and set p* = constant. This strong
prepulse shock compresses the shell material to a density
r r g g* = +( ) -( )0 1 1  (here r0 is the initial shell density) and
sets the adiabat of the shocked material to a constant value
S p* * * .= rg  The shock velocity Us* and the fluid velocity of
the shocked material u* can be approximated using the Hugoniot
relations for strong shocks [Eqs. (15)�(17)], leading to

U
p

s*
*

*

,=
+( )
-( )

g
g r

1

2 1

2

(18)

u
p

*
*

*

,=
-( )
2

1g r
(19)

where the relation U ms s*
ú= r0  has been used. After the

interval Dtprep, the laser intensity (and therefore the applied

ablation pressure) is greatly reduced causing a rarefaction
wave to propagate from the ablation front toward the shock
front. The leading edge of the rarefaction wave travels with the
sound speed a p* * *= g r  inside the shocked material, which
in turns travels with the post-shock velocity u* with respect to
the lab frame. The rarefaction wave�s leading-edge velocity in
the lab frame is therefore

U a u Ur s= + =
+

+
-( )È

Î
Í
Í

ù

û
ú
ú* * *

2

1
1

1

2g
g g

(20)

and is always greater than the shock velocity Us*, indicating
that the rarefaction wave travels faster than the shock. The
shock is therefore overtaken by the rarefaction wave. The
overtaking time can be determined by equating the distance
traveled by the rarefaction wave with the distance traveled by
the shock:

u a t d U tc s* * * * * ,+( ) = +D D (21)

where d U tc s= -( ) +( )*D prep g g1 1  is the compressed thick-
ness of the shocked material at time t = Dtprep, a p* * *= g r
is the shocked material sound speed, and Dt* is the traveling
time of the rarefaction wave before overtaking the shock. A
simple manipulation of Eq. (21) yields the overtaking time
interval

D
D

t
t

* .=
-( ) -

prep

2 1 1g g
(22)

At time tr = Dtprep + Dt*, the shock and the rarefaction wave
interact after having propagated through an areal density:

m t U t a t pr s* * * * * * * * .= = =r r g r0 D D (23)

Once the shock is overtaken by the rarefaction wave (t > tr),
the shock strength starts to decrease, as does the entropy
jump across the shock. Since the entropy of each fluid element
is conserved after the shock, the adiabat is independent of
time and only a function of the areal density: S = S(m).

Before the shock starts to decay, the post-shock variables
are uniform and their values are denoted by the subscript *:
p*, r*, S*, a*. Using these post-shock values, one can define a
set of dimensionless variables
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where m* and Dt* are defined in the previous section. Here,
t = 0 represents the time when the laser power is lowered and
the rarefaction wave is launched. The equations of motion
[Eqs. (8), (9), and (11)] can be rewritten in a dimensionless
form using the variables in Eqs. (24). A simple manipulation
leads to the following form of the equations of motion:

∂
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= ∂
∂

-� �
,
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(25a)

g
t
∂
∂

= - ∂
∂

� �
,

u p

z
(25b)

� � � ,p S z= ( )rg (25c)

with the entropy conservation equation [Eq. (25c)] valid away
from the shock front. Similarly, the Hugoniot conditions in the
strong shock regime can also be written in the following
dimensionless form:

ú � ,z S zs s= - ( )g
g

1

2
(26a)

� , ,r tzs( ) = 1 (26b)
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s
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where z m t ms s∫ ( ) *. Here the dot in úzs  indicates a derivative
with respect to t. For 0 < t < 1, the rarefaction wave propa-
gates toward the shock front and Eqs. (26) yield the standard
rarefaction-wave solution
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where z varies between 0 and t. At time t = 1, the rarefaction
wave overtakes the shock at the point z = 1. At this time, a
perturbation propagating with the sound speed travels back-
ward down the rarefaction wave while the shock strength
decays as the shock front travels forward. The adiabat, which
is a function of the Lagrangian coordinate z, is uniform �S z( ) =[ ]1
for z < 1 and decays for z > 1. For times t > 1, Eqs. (25) need
to be solved in the two domains of the rarefaction wave 0 <
z < 1 and the decaying shock 1 < z < zs. For z < 1, the
function �S  is known �S =( )1  while it is unknown for z > 1. At
the point z = 1, the two solutions must satisfy the boundary
conditions of continuous pressure and velocity:

� � ,u z u z=( ) = =( )- +1 1 (28a)

� � .p z p z=( ) = =( )- +1 1 (28b)

At the trailing edge of the rarefaction wave (z = 0), both density
and pressure are small as the applied pressure is greatly
reduced after the end of the prepulse. For simplicity, we
assume that the post-prepulse pressure is negligible and adopt
the vacuum boundary conditions at z = 0:

� , ,     � , .r 0 0 0 0t p t( ) = ( ) = (29)

It is important to observe that all the equations and initial and
boundary conditions depend only on g. It follows that the
entropy �S z( )  is a universal function of z for any given g and
can be determined by a single numerical simulation.

Solution for m >> m
*

Even though a single one-dimensional simulation is suffi-
cient to provide the adiabat shape, it is instructive to calculate
analytically the entropy distribution. It is important to realize
that Eqs. (25) cannot be solved exactly with the boundary and
initial conditions in Eqs. (26)�(29). It is, however, intuitive that
after some time from the end of the prepulse, the shock
propagation becomes independent of initial and boundary
conditions and develops a self-similar character. One would
expect that the solution of Eqs. (25) becomes self-similar for
zs(t) >> 1 and t >> 1. The self-similar solution has been
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studied by several authors23�28 and provides the asymptotic
behavior of a decaying shock. Here we review the self-similar
calculation valid for zs >> 1 and then solve the decaying-
shock problem in the opposite limit of zs(t) � 1 and t � 1 in
order to generate a matching formula approximating the solu-
tion for arbitrary z and t.

A self-similar solution of the decaying-shock problem can
be found in the limit of m* Æ 0. Because of the absence of
characteristic quantities, it is appropriate to use dimensional
variables m, t, p, r, and u and the following divergent form of
the entropy:

S m
m

( ) = s
d
* (30)

with d to be determined by the solvability condition. The
shock trajectory can be found from the shock velocity equation
[Eq. (17)] after substituting p mps = s rg d

* *  and rps = r*,
leading to the following differential equation:

ú ,* *m t
m t

s
s

( ) = -
( )

+g s rg
d

1

2

1

(31)

which exhibits the power-law solution
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2
2d g s rg
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* * . (32)

Since the only relevant position is the shock location ms(t), the
corresponding self-similar coordinate is

x =
( )

m

m ts
(33)

and the self-similar dependent variables are

r r r x
r

x s r xg= ( ) = ( ) = ( )*
*

* *
� ,     

ú
� ,     � ,u

m
u p ps (34)

where � � .p x r x g( ) = ( )  Substituting Eqs. (33) and (34) into
Eqs. (8) and (9) yields the following coupled ordinary differ-
ential equations (ODE�s) for �u  and �r :

p x
x

x( ) + ( ) =du

d
r

�
,0 (35a)

p x x
r
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x( ) + ( ) =
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p x g x g r
x

g

d( ) = - -
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+
1

2

1

1

�
, (35c)

r ux d g d r
x

g

d( ) = -( ) + +4
1

1
�

�
. (35d)

The boundary conditions at the shock front are governed by the
Hugoniot relations

� ,      � ,r
g

1 1 1
2

1
( ) = ( ) =

-
u (36)

while �r 0( )  must vanish �r 0 0( ) =[ ] since the entropy is infinite
at m = 0. The pressure at m = 0 is not assigned; it is determined
instead by the self-similar solution of Eqs. (35). Integrating the
momentum conservation equation [Eq. (9)] between m = 0 and
m = ms(t) and using the Hugoniot relations leads to the
following equation for the applied pressure:

p m t
t

u dm
m ts=( ) = ∂

∂ ÚÈÎÍ
ù
ûú

( )
0

0
, , (37)

which can be rewritten upon substitution of Eqs. (32) and (34)
into the simple form

p m t
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* *r

g s r

d

d

x x

g d

d
d

d
d

(38)

Observe that Eq. (38) indicates that the applied pressure is a
decaying function of time with a power-law dependence. One
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can also argue that the self-similar solution represents the case
of an impulsive pressure p(m = 0, t > 0) = 0 only when the
zero global momentum condition is satisfied:

� .u dx x( ) =Ú 0
0

1
(39)

In summary, the self-similar solution requires either an applied
pressure of the form given in Eq. (38) or an impulsive pressure
with the condition of zero global momentum [Eq. (39)]. Both
the finite-pressure and zero-pressure conditions at m = 0
impose some restrictions on the solution of Eqs. (35) near
x Æ 0. It is therefore useful to solve the self-similar equation
near x = 0 to determine whether or not a finite- or zero-
pressure solution exists. Indeed, by expanding the equations
near x = 0, one finds two power-law solutions:

� ,r x x x
d m( ) +( )+

� W W0
1

1
2 1 K (40)

� ,r x q x n x q x
d
g w( ) + + +( )� 0 1 11 K (41)

where w d g m d g= - = +( ) -( )2 2 1 2, ,

q
q

d g
g w w

d d
gg1

0
1 2

1 1

2 1
1

2
=

-( )
-( )

+ -
Ê
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�
�̄+ , (42)

W W1 0
1 2 1

=
-( ) - -( )

-( )
+g ag d ag d

m a m
(43)

with a d= +1 2  and q0, W0, and n1 representing arbitrary
constants. It is important to note that Eq. (41) corresponds to
the finite-pressure solution while Eq. (40) corresponds to a
zero pressure at m = 0.

1. Self-Similar Solution
Equations (35) can be numerically solved for different

values of d. For d £ 1.2748, the solution is regular and
merges with a constant-pressure solution near x = 0. Fig-
ure 95.9 shows a plot of the functions �r x( )  and �p x( )  for
d = 1.0. Observe that �p 0( )  is not zero, representing a solution
with a finite applied pressure that decays in time as t- +( )2 2d d .
In agreement with Ref. 25, the ODE�s [Eqs. (35)] become
singular for d � 1.2748 at the point xc � 0.0851, where p(xc)

= 0. Observe that the derivatives of �r  and �u  would be singular
unless r(x) also vanishes at xc. Indeed, for d � 1.2748, both p(x)
and r(x) vanish at xc � 0.0851, indicating that the derivatives
of �r  and �u  are regular even though they may be discontinuous
at xc. To avoid integrating the equations through the singular
point xc, one can numerically solve between 1 and xc and
between 0 and xc with the constraint that both �r x( )  and �u x( )
be continuous at xc. The numerical integration in the (0, xc)
interval can be performed by using the expansions in Eqs. (40)
and (41) as initial conditions. Indeed, for W0 � 1.8949, the
solution starting from the initial conditions in Eq. (40) matches
the solution in (xc, 1) at the singular point xc. Similarly, for q0
� 0.2658, the solution starting from the initial conditions in
Eq. (41) matches the other solution at xc, implying that there
are two valid self-similar solutions for d � 1.2748, correspond-
ing to a finite and to a vanishing applied pressure. Figure 95.10
shows both solutions for d � 1.2748. Observe that the two
solutions are identical for x > xc and differ in the interval
(0, xc) with the dashed line representing the finite-applied-
pressure solution. The existence of two valid solutions for
d = 1.2748 is quite revealing. Because the finite-pressure
solution requires an applied-pressure decaying as

p m t
t t

=( )
+

0
1 1
2

2
0 78, ~ ~ .d

d
(44)

and the zero-pressure solution requires a sudden decay, one can
speculate that a pressure decay rate faster than t-0.78 does not
alter the solution for x > xc, which becomes quickly self-
similar with d � 1.2748, independent of the applied-pressure
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for d = 1.0.



THEORY OF LASER-INDUCED ADIABAT SHAPING IN INERTIAL FUSION IMPLOSIONS: THE DECAYING SHOCK

154 LLE Review, Volume 95

decay rate. In conclusion, the adiabat shape left behind by a
decaying self-similar shock follows a power law of the areal
density

S
m

~
1
d (45)

with d £ 1.2748. Values of d < 1.2748 correspond to solutions
for an applied-pressure decaying as p m t t=( ) - +( )0 2 2, ~ ,d d

while the value d = 1.2748 corresponds to solutions for a
faster-decaying or impulsive pressure p m t t=( )[ -0, ~ m  with
m d d> +( )]2 2 .
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Two self-similar solutions for the pressure given d = 1.2748. The solid line
represents the vanishing-applied-pressure solution, whereas the dashed
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Decaying Shock Solution near m = m
*

In the case of a sudden decrease of applied pressure, the self-
similar solution provides an accurate asymptotic representa-
tion for m >> m*. To derive a solution valid for any m, however,
we first solve near m = m* and then generate a function for S
that matches both the solution near m* and the self-similar
solution for m >> m*.

Since �S z( ) is independent of time, one can solve near z = 1
(i.e., m = m*) at time t � 1 representing the time of interaction
between the shock and the rarefaction wave. The first step is to
find the velocity at z = 1 and t = 1 + dt. This can be
accomplished using the method of characteristics. The charac-
teristic equations in the dimensionless coordinates are

ú � � � ,z p= ± = ± +r rg 1 (46)

where the last term on the right-hand side applies for z £ 1,
where the entropy is uniform and � � .p = rg

Figure 95.11 shows the characteristic C0
+  representing the

straight line z = t and the characteristic C0
-  with a slope

úz = -1 at z = 1, t = 1. The point A has coordinates

t t tA A A Ad z d= + = -1 1,      , (47)

and the characteristic C1
+  passing through A has the slope

ú � ,z zA A= ( ) +r t g 1  at A. Notice that dtA has not been defined
and is determined later as a function of dt. Using the rarefac-
tion-wave solution [Eqs. (27)] and expanding �r  near A, one
finds the slope of C z d A1 1 2+ -[ ]ú � t  leading to the following
form of C1

+  near A:

z d zA A A= -( ) -( ) +1 2 t t t . (48)

The relation between dtA and dt can be found by substituting
the coordinates of B (i.e., setting z = 1, t = 1 + dt) into Eq. (48)
yielding dt = 2dtA. Using the property of the Riemann function
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J a u+ = -( ) +2 1� �g , which is constant along C1
+ , yields the

following relation for the Riemann invariant:

J A J B+ +( ) = ( ). (49)

This equation can be used to determine a relation between �u
and �a  at point B, given these quantities at point A. The values
of both �u  and �a  at point A can be easily determined from the
rarefaction-wave solution, leading to

� ,u
d

A
A�

2

1

4

1g g
t

g-( ) - +
(50)

� � .a dA A A= - -
+

-r g
g

tg 1 1 2
1

1
� (51)

Since point B is defined by the coordinates z = 1 and t =
1 + dt, the velocity and sound speed can be written as Taylor
expansions about the point z = 1, t = 1, yielding

� �
� �

,,
, ,

u u
u

d
u

dB � 11
11 11

2

1
+ ∂

∂
È
ÎÍ

ù
ûú

=
-( ) +

∂
∂
È
ÎÍ

ù
ûút

t
g g t

t (52a)

� �
�

.
,

a dB B= + - ∂
∂

È
ÎÍ

ù
ûú

-
r g r

t
t

g 1
2 1

1

2 11

� (52b)

Substituting Eqs. (50)�(52) into (49) leads to the following
relation between the pressure gradient and density time
derivative:

∂
∂

È
ÎÍ

ù
ûú

=
+

+ ∂
∂

È
ÎÍ

ù
ûú

� �
,

, ,

p

z 11 11

4

1

g
g

g r
t

(53)

where the pressure gradient enters Eq. (53) through the mo-
mentum conservation equation relating the acceleration to the
pressure gradient. It is important to emphasize that all the
temporal and spatial derivatives above are calculated at
z = 1-, which is before the shock decay region (z > 1). Because
the pressure, entropy, density, and velocity are continuous at
z = 1, it follows that all the time derivatives must also be
continuous. Furthermore, the conservation of momentum
[Eq. (9)] requires that the pressure gradient be continuous due
to the continuity of the acceleration (∂tu). On the other hand,

there are no such constraints on the density and entropy
gradients, which are discontinuous at z = 1.

The next step is to expand the Hugoniot conditions con-
cerning the post-shock velocity at the shock front defined as
zs = 1 + dzs. We start from the post-shock velocity equation

� , � ,u dz d p dz ds s1 1
2

1
1 1+ +( ) =

-( ) + +( )t
g g

t (54)

and expand it near (1,1), retaining the first-order terms

∂
∂

Ê
ËÁ

�
�̄ -( ) +

-È
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Í
Í
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ú
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Ê
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g
g g11 112 1
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2

3

2
0

p

z
(55)

In the derivation of (55), the equations of motions [Eqs. (25)]
and the shock velocity at t = 1, úzs 1 1 2( ) = -g g  have been
used. Equations (53) and (55) can then be solved to determine
the density time derivative and the pressure gradient, which
depend only on the adiabatic index

∂
∂

Ê
ËÁ

�
�̄ = -

+( )
+

-( ) +
-

�
,

,

r
t

g
g
g

g
g

11

6 1
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2 2 1

1
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(56)

∂
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Ê
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�
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+( ) -( ) + -( ) +[ ]
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z 11

4 2 2 1

1 3 1 2 1 2

g g

g g g g g
(57)

The remaining Hugoniot condition concerning the post-shock
density � ,r t1 1 1+ +( ) =dz ds  can also be expanded to first
order and, using Eq. (56), yields the density gradient at z = 1,
t = 1:

∂
∂

Ê
ËÁ

�
�̄ =

+( )
- + + -

+�
,

,

r g
g
g

g
g

z 11

6 1

3
2

1
2

1
2

1
2

(58)

where the superscript + indicates that the derivative is calcu-
lated on the z > 1 side. The last step is to determine the entropy
gradient at z = 1 using the definition of the dimensionless
entropy � � �S p= rg  and the pressure and density gradients
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provided by Eqs. (57) and (58). A straightforward calculation
leads to the following form of the entropy gradient at the
beginning of the shock decay:

∂
∂

Ê

ËÁ
�
�̄ = - =

-
+( )

+�
,      ,

,

S

z
11

2

2 1
1b b g

g
� (59a)

where

� = - + -
-( ) + -( )1 2 2

2 1

3 1 2 2 1

g
g g g

. (59b)

For g > 1.4, the term � is typically small � <( )0 06.  and
asymptotically reaches the constant value -0.029 for g Æ �.
This concludes the solution near z = 1. The entropy and its
derivatives at z = 1 have been determined and can be used
together with the self-similar solution to generate a matching
formula approximating the entropy over the entire range of
z ≥ 1.

Matching Formula for the Adiabat Shape
An approximate formula representing the entropy profile

left behind by a decaying shock can be constructed by match-
ing the solution near m = m* with the self-similar behavior for
m >> m*. The matching formula must satisfy the conditions

� ,
�

, � ~
.

,S
dS

dz
S z

z
1 1 1

0 923( ) = ( ) = - Æ �( )b d (60)

where d = 1.2748 and b = 1.459 for g = 5/3. It is important
to notice that the self-similar solution provides only the
scaling with z but not the actual coefficient. While a coefficient
near unity is expected, the numerical solution of the Euler
equations [Eqs. (8)�(10)] has indicated that the correct coeffi-
cient for (g = 5/3) is 0.923. An extremely accurate repre-
sentation of the adiabat profile can be obtained by choosing
the following fitting formula:

� ,S z
z

( ) = +
+

Ê
ËÁ

�
�̄

1 n
nd s

s
(61)

which satisfies the two conditions �S 1 1( ) =  and � ~ .S z zÆ�( ) -d

The parameters n and s can be determined by applying the
other two conditions on �¢( )S 1  and on the coefficient 0.923

[Eq. (60)]. A simple calculation leads to the following values
(for g = 5/3): n = -0.127 and s = 0.591, which upon substitu-
tion into Eq. (61) yields the adiabat shape function

� .

.
..

.

S z
z

( )
-

Ê
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�
�̄�

0 873

0 1272 157

0 591

(62)

A simpler formula for the adiabat shape can be obtained by
fitting Eq. (62) with a simple power law such as

� ,.S z
z

( )�
1

1 315 (63)

which exhibits an error below 3% with respect to the numer-
ical solution over the range 1 < z < 10. Figure 95.12 shows the
ratios between the numerical solution of the Euler equations
[Eqs. (8)�(10)] and Eqs. (62) (solid) and (63) (dashed). Ob-
serve that Eq. (62) reproduces the numerical results very
accurately over any range of z. Figure 95.12 also shows a
comparison between the numerical solution with the adiabat
shape derived in Ref. 18 (dashed�dotted) and the self-similar
solution � .S z= -1 275  (dotted) of Refs. 23�28. The adiabat
profile of Ref. 18, derived using a spatially frozen pressure
profile, exhibits a significantly different behavior from
Eq. (62), while the behavior of the self-similar solution differs
mostly near z = 1. In view of the good agreement between the
simple power law and the simulation, Eq. (63) will be used as
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the adiabat shape induced by a decaying shock in an ideal
gas when the applied pressure vanishes right after the end of
the prepulse.

Effects of Mass Ablation and Residual Ablation Pressure
In laser-driven implosions, mass is ablated off the outer

shell surface at a rate ú ,ma  which depends on the laser intensity
ú ~ .m Ia L

1 3  When the laser power is lowered after the prepulse
(t = Dtprep) and the rarefaction wave is launched, a fraction of
the shell mass has been ablated. Since the relevant m* is the
areal density overtaken by the rarefaction wave before inter-
acting with the shock, it is appropriate to reset the origin of the
m variable so that m = 0 corresponds to the fluid element on the
outer surface at the end of the prepulse t = Dtprep. For this
purpose, we denote the new mass variable as m m ma

a
( ) = - prep,

where ma
prep  is the mass ablated during the prepulse and

m(a) = 0 represents the point where the rarefaction wave is
launched. The time Dt* representing the time interval between
the end of the prepulse and the rarefaction�shock interaction is
affected by ablation and satisfies the following equality:

u a t d d U tc a s* * * * *,+( ) = - +D D (64)

where d U tc s= -( ) +*D prep g g1 1 is the compressed thickness
of the shocked material at time t = Dtprep and da is the thick-
ness of the ablated portion d m V ta a a= =prep prep

prepr* ,D  where
Va

prep  is the ablation velocity during the prepulse. The interval
Dt* can be derived from Eq. (64), yielding

D
D

t
t

Ma
a* ,=

-( ) -
-

-
Ê
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�
�̄

prep prep

2 1 1
1

2

1g g
g

g
(65)

where M V aa a
prep prep∫ *  represents the ablative Mach num-

ber during the prepulse. Observe that we have used the super-
script a to discriminate between the Dt* with [Eq. (65)] and
without [Eq. (22)] ablative correction.

It is interesting to notice that Ma
prep  is independent of the

laser power. Indeed, using the well-known relations for the
ablation rate and pressure,1,29,30 one can easily construct the
following expression:
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where l (mm) is the laser wavelength in microns and Pa (Mbar)
is the ablation pressure in megabars. The ablative Mach
number is calculated for g = 5/3 by setting V ma a

prep prep= ú ,*r
leading to

Ma
prep

3g cm m
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Í

ù

û
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where r0 is the initial density in g/cm3 before the shock.
Observe that the ablative correction of Dt* in Eq. (65) is
significant and approximately equal to 20% for DT ice
(r0 = 0.25 g/cm3) and UV lasers (l = 0.35 mm) leading to
D Dt ta

* . .� 0 64 prep  It follows that the areal density overtaken
by the rarefaction wave�s leading edge before the shock inter-
action has the same form as Eq. (23): m a ta a

* * * *=( )D r ; how-
ever, the numerical value of ma

*  is reduced with respect to
Eq. (23) by approximately 20% because of the reduction in Dt*
due to the ablative correction (i.e., D *t

a ). The analysis in the
previous four sections (pp. 150�157) follows without any
changes, but with the premises that m, m*, and Dt* used in the
definitions of z and t are replaced by m(a), ma

* , and D *t
a ,

respectively, which include the ablative corrections. This leads
to the following shape function from Eq. (63):

� ,*S
m

m

a

a
=
È

Î
Í
Í

ù

û
ú
ú( )

d

(68)

where d � 1.315 for a flat prepulse with an applied pressure
that vanishes right after the prepulse end.

Another important effect occurring in laser-accelerated
targets is that of residual heating of the ablation front. When the
laser power is lowered (or turned off) at the end of the prepulse
t = Dtprep, the heat stored in the coronal plasma continues to
flow toward the ablation front. Because of the finite heat
capacity of the corona, the ablation pressure does not vanish
instantaneously when the laser is turned off. Instead the abla-
tion pressure decays in time approximately following a tempo-
ral power law:

P t t p P t t p
t

ta a

n

<( ) = >( ) = Ê
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�
�̄D D

D
prep prep

prep
* *, . (69)
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The power index n can be determined by fitting Eq. (69)
with the results of 1-D simulations using the ICF code
LILAC.31 Figures 95.13(a) and 95.13(b) compare the decay of
the ablation pressures from LILAC (solid lines) with Eq. (69)
for a 100-ps prepulse inducing a 26-Mbar ablation pressure
[Fig. 95.13(a)] and a 300-ps prepulse inducing a 33-Mbar
pressure [Fig. 95.13(b)] on a cryogenic DT slab of 350-mm
thickness. The power indices in Eq. (69) that fit the simulation
results are n � 2 for the 100-ps prepulse [dashed line in
95.13(a)] and n � 3 for the 300-ps prepulse [dashed line in
95.13(b)]. It is important to notice that when the ablation
pressure depends on the ratio t tD prep, the resulting boundary
conditions [discussed in The General Problem of the
Decaying Shock (p. 151)] depend exclusively on the dimen-
sionless time t = t tD *  and the adiabat index g. Indeed, one
can substitute

t

tD prep
= ( ) ( ) = -( ) -t
t g

t g g g
0

0 2 1 1,     (70)

into Eq. (69) and conclude that the appropriate boundary
condition for the dimensionless applied pressure can be cast in
the following form:

� , ,      � , .p z p z
n

= <( ) = = >( ) = Ê
Ë

�
¯0 1 00 0

0t t t t t
t

(71)

It follows that for a given value of g and power index n, a single
numerical simulation provides the universal function � ,S z n( ) .
As recognized in Self-Similar Solution (pp. 153�154), the
asymptotic solution becomes self-similar when n > 0.78;
however, the transition to a self-similar form occurs at large z
>> 1 (i.e., m >> m*), while the interesting range of z for ICF
applications is typically below 10. In this case, it is important
to determine the adiabat shape before the transition to a self-
similar profile. For this purpose, we carry out the numerical
solution of Eqs. (25), with boundary conditions [Eq. (71)] and
different n�s, to determine the corrections caused by a finite
time decay of the pressure within the interval 1 < z < 10. For
simplicity, we have maintained a power law fit for �S  and
calculated the power index for n varying in the range of 2�6
(Table 95.I). For n = 2 and 3, the numerical solution yields an
adiabat shape that can be approximated with the following
power laws:
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(72)

Observe that the power indices are somewhat less than d =
1.315 [Eq. (63)] derived in the case of a sudden decrease in
pressure (i.e., n Æ �). The fact that the adiabat shape is not as
steep as in the case of a sudden decrease in pressure should not
be surprising since the residual applied pressure sustains the
shock, preventing its rapid decay. As expected, the value of d
increases with n and reaches the asymptotic value d = 1.315 for
n Æ �. This concludes the theoretical analysis of the adiabat
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Table 95.I: Adiabat-shape power indices as a
function of the prepulse pressure
time-decay power index.

n d

2 1.05

3 1.13

4 1.2

6 1.25

• 1.315

adiabat. Here, the density of 0.25 g/cm3 refers to the
uncompressed DT ice. The laser intensity required to drive the
ablation pressure in Eq. (73) can be derived by the standard
relation P Ia Mbar m( ) = ( )[ ]40 15

2 3l m ,  where I15 is the laser
intensity in units of 1015 W/cm2. This relation is valid for
steady-state laser absorption and needs to be used with caution,
as discussed later in this section. The prepulse duration can be
derived from the adiabat shape and the design values of the
outer- and inner-surface adiabats. Using Eq. (72), one can write

a
a

d
out

in

shell=
Ê
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�
�̄

m

m

a

a
*

, (74)

where m m ma
ashell shell
prep= ( ) -0  is the total shell areal density

left after the prepulse and d � 1 as for typical prepulses with
Dtprep £ 300 ps. A straightforward manipulation of Eq. (74)
yields the following form of the required prepulse duration:
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where dshell is the initial shell thickness and
�a aM= - ( )[ ]prep

inn out2 23 1 54 1. . a a d  represents the ablative
correction, which is typically �a < 0.2 for Ma

prep � 0 09. .
Equations (73) and (75) show that an arbitrarily large adiabat
ratio can be induced by simply increasing the applied prepulse
pressure and decreasing the prepulse duration. There are limi-
tations, however, with regard to the magnitude of the outer-
surface adiabat and the adiabat ratio. The first constraint
concerns the adiabat ratio at the shock-breakout time
q a a= out inn . The limits of q are dictated by the mass ablated
during the foot of the laser pulse following the prepulse. Since
the adiabat is flat for m ma< * , the largest outer-surface adiabat
(for a given inner-surface adiabat) can be achieved by tailoring
the prepulse intensity and the laser foot duration in order to
ablate the flat-adiabat region. This requires that

m ma
afoot = * , (76)

shape. The next step is to derive a set of simple formulas that
can be conveniently used to design ICF-capsule or planar-foil
experiments with adiabat profiles shaped by a decaying shock.

Prepulse Design Formulas for DS Shaping
Starting from the adiabat shape derived in the previous

sections, it is possible to derive some simple formulas relating
the laser prepulse and foot pressure/intensity, the prepulse and
duration, and the desired values of the outer- and inner-surface
adiabats. It is clear that the prepulse pressure initially deter-
mines the front surface adiabat; however, since the ablation
front advances inside the target with the ablation velocity, the
ablation-front adiabat is typically a function of time. It is
therefore important to specify a reference time at which the
ablation-front adiabat is determined and optimized. Since the
acceleration phase starts a short time after the shock breakout,
we choose to optimize the adiabat shape at shock breakout
with the intent to induce the largest-possible outer-surface
adiabat during the acceleration phase. It is also important to
notice that for a constant pressure prepulse, the outer-surface
adiabat is constant for 0 < m < m* and decays for m > m*.

Using the standard definition for the normalized adiabat
a r∫ ( ) ( )P Mbar g cm/ . ,2 18 3 5 3

 one can easily determine
the ablation pressure required to induce the desired outer-
surface adiabat:

Pa Mbar
g cm
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(73)

where r0 is the initial shell density and the value aout = 9 has
been chosen as a typical desired value of the ablation-front
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where m m ta a
foot foot

foot= ú D  is the mass ablated during the time
interval between the end of the prepulse and the shock-breakout
time. A similar principle is used in Ref. 18.

The interval Dtfoot can be estimated from Eq. (26a) relating
the shock velocity szú  to the shell adiabat � ,S z z( ) � 1 d  leading
to the following shock trajectory:

zs t d g
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. (77)

It follows that the time interval between the end of the prepulse
(t = 0) and the shock-breakout time can be derived from
Eq. (77) by setting zs = q1/d, where q a a= out inn  is the desired
adiabat ratio. This time interval represents the foot duration
Dtfoot and depends only on the prepulse characteristics (it is
independent of the foot). This is not the case in the absence of
a prepulse since the foot length depends on the foot properties.
In the simplest pulse shapes, the foot intensity is kept constant,
such that the induced ablation pressure Pfoot corresponds to the
desired inner-surface adiabat.

It follows that the foot properties (Dtfoot and Pfoot) can be
summarized by the following simple formulas:

D Dt ta
foot = +

- +Ê
ËÁ

��̄

È

Î

Í
Í
Í
Í

ù

û

ú
ú
ú
ú

+ -

* ,1
1

2
1

2

2
2

1
q

g
g

d

d
d

(78a)

Pa
foot

innMbar
g cm

( ) = ( )È

Î

Í
Í

ù

û

ú
ú

2 18
0 25

0
3 1 67

.
.

,

.

a
r

(78b)

where D Dt ta
* .� 0 64 prep  for DT. Observe that, using (78a),

Dta
*  cancels from both sides of Eq. (76) and the maximum

adiabat ratio q* satisfies the following equation:
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Using Eqs. (66), it follows that the foot/prepulse ablation rate
ratio is related to the foot/prepulse pressures and therefore
adiabats through the relation ú ú .m ma a

prep foot = q  It is very
important to notice that the steady-state ablation relations used
in Eq. (66) and adopted in the current derivation are not very
accurate during the prepulse where a steady state is not reached.
Furthermore, high-performance target design requires the foot
intensity to rise before the shock breaks out on the inner
surface. This is commonly done to prevent secondary shock
generation during the rise to full power, which would set the
inner portion of the shell on a high adiabat. Since the total laser
energy in a rising foot is larger than in a flat (constant-intensity)
foot of the same starting power, it follows that the mass ablated
during the rising foot is larger than for the flat foot. All these
uncertainties in the calculation of the ablated mass can be
heuristically accounted for by introducing a corrective factor c
in the ratio of mass ablation rates, thus setting
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ú
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a
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where c > 1 represents an enhancement with respect to the
steady-state ablation rate of a flat foot. The final form of the
equation governing the maximum adiabat ratio can be written
in the following form:
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where q* is the optimized adiabat ratio. To estimate the size of
the maximum adiabat ratio, we solve Eq. (81) for cryogenic DT
with Ma

prep � 0 09.  [Eq. (67)] for both the idealized case of
c = 1 and for a more-realistic rising-foot case with c = 1.4.
The results are given in Table 95.II. Note that the maximum
adiabat ratio is lower in the rising-foot case. Because the
maximum adiabat ratio is given by Eq. (81), the optimum
prepulse pressure and duration are determined by Eqs. (73)
and (75) upon substitutions of the maximum ratio q* leading to
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Table 95.II: Maximum ratio of inner- to outer-surface
adiabat as a function of the adiabat-shape
power index for two values of x.
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where �a has been set approximately equal to 0.18 in accor-
dance with typical adiabat ratios of 5 to 10 and d is provided in
Table 95.I (d � 1.05 and d � 1.13 for prepulses in the 100-ps
and 300-ps range, respectively).

The mass-ablated m m ma a a
tot prep foot= +  during the prepulse

and the foot of the laser pulse can be easily determined by
using Eq. (80), leading to
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The foot/prepulse-length ratio in Eq. (84) can be derived from
Eq. (78), and, after a straightforward manipulation, the total
ablated mass fraction can be written in the following form:
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Equation (85) is valid for any prepulse and can be simplified
for the optimized prepulse defined by Eq. (81), leading to
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where q* is the optimized adiabat ratio satisfying Eq. (81).
Observe that Eq. (86) does not depend directly on the correc-
tive factor c; however, it does depend on c through the opti-
mized adiabat ratio and can be conveniently used to determine
the corrective factor c when compared with numerical simula-
tion. A single iteration is usually adequate to calculate c. One
starts by guessing a value of c ~ 1, then designs the optimized
prepulse and foot by solving Eq. (81) to find q*; Eqs. (82)
and (83) to find Dtprep and Pa

prep; Eqs. (78a) and (78b) to find
Dtfoot and Pa

foot ; and Eq. (86) to find the ablated mass fraction
during the prepulse + foot. The pulse (prepulse + foot) is then
simulated with a one-dimensional code, and the fraction of
ablated mass is extracted at shock breakout from the simulation
output. If this fraction is larger/smaller than the one predicted
by Eq. (86), then one increases/decreases c until Eqs. (81) and
(86) yield the same value of the ablated fraction from the
simulation. One then recalculates the prepulse and foot prop-
erties with the new value of c. Typically, one adjustment of c
is sufficient to produce highly accurate results since the differ-
ence between simulated values and desired design parameters
is negligible. For typical high-performance target designs,18

the ablated mass fraction [Eq. (86)] during the prepulse + foot
is in the 20% range. As shown in the next section, this pulse
design technique seems to be quite accurate, general, and
applicable to different foot and prepulse shapes.

Simplified Adiabat Profiles and Comparison with LILAC
After including the �nonideal� effects of mass ablation and

residual ablation pressure, it is useful to carry out a detailed
comparison between the theoretical results of the previous
sections and the predictions of the 1-D ICF code LILAC31

including all the relevant ICF physics. All the LILAC runs are
carried out selecting the Thomas�Fermi equation of state.
Different choices of the equation of state do not significantly
alter the adiabat shape as long as the prepulse is tuned in order
to induce the desired inner-surface adiabat.
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To carry out a meaningful comparison of the adiabat shapes,
it is convenient to rewrite the adiabat shape function [Eq. (68)]
in a form that can be easily compared with the output of LILAC.
The first obstacle is in the accurate determination of the terms
m(a) and ma

*  in Eq. (68), which are typically hard to extract
from LILAC output. This can be avoided by rewriting Eq. (68)
using the full areal-density coordinate m m ma

a= +( ) prep.  Note
that the ratio ma a

am m∫ prep
*  is significantly smaller than

unity. For DT and a laser of l = 0.35 mm,

m
ra
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D

D
prep prep� 1 54 0 14 (87)

Since it is much smaller than unity, one can simplify Eq. (68)
using ma as an expansion parameter. A straightforward manip-
ulation leads to the following adiabat shape function including
first-order corrections in ma:
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hmin = 1 and hmax * ,= m mshell
tot  where mshell is the total

shell areal density. The function f(h) and the power index da
can be cast in the following form:
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It is important to observe that the function f(h) vanishes at both
h = 1 and h = hmax and its maximum varies between 0.16 and
0.24 for typical values of 5 < hmax < 10. It follows that the
maf(h) term in Eq. (88a) can be neglected and the adiabat shape
for DT can be written as a simple power law:
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where the relation da � 1.062d has been used in view of the
fact that da is approximately independent of hmax as it
varies between da � 1.07d for hmax = 10 and da � 1.055d

for hmax = 5. Using Eq. (89), the adiabat profile can be written
as a convenient function of the full areal-density coordinate
m and the initial shell areal density mshell:
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Obviously, Eq. (90) can be easily compared with LILAC output
since the inner-surface adiabat and the full areal density are
readily available, while the values of d are given in Table 95.I
for different prepulse durations.

We consider two prepulses with 100-ps and 300-ps duration
and 300-TW/cm2 intensity applied to a 200-mm and 500-mm
planar DT foil, respectively. From LILAC output we immedi-
ately find that ainn = 0.85 and 1.18 for the 100-ps and 300-ps
prepulses, respectively. According to the theory and Table 95.I,
the adiabat shapes can be approximated as
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where the symbol ~ indicates that the two adiabat profiles can
be used for prepulses in the 100-ps and 300-ps range, respec-
tively. Figure 95.14 shows the adiabat profiles versus the
normalized Lagrangian coordinate m/mshell from LILAC
(solid) and from Eqs. (91) (dashed) for the two prepulses. The
good agreement between theory and simulations indicates that
Eqs. (90) and (91) can indeed be used to accurately determine
the adiabat profiles of typical ICF targets.

The next step is to compare the maximum obtainable
adiabat ratio provided by Eq. (81) with LILAC simulations.
We consider an 85-mm solid DT planar foil in order to simulate
a typical OMEGA cryogenic shell and focus on the simple
case of a flat-laser-foot intensity. The mass ablation enhance-
ment factor c is initially set equal to unity and then adjusted to
c = 0.85 in order to recover the mass-ablated fraction of 13%
as indicated by the LILAC simulations. We choose an inner-
surface adiabat of ainn = 1 and determine the maximum adi-
abat ratio through Eq. (81), leading to q* � 10. Equations (75)
and (78) yield prepulse and foot durations of 60 ps and 1571 ps,
respectively. The predicted shock-breakout time is then
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ts = Dtprep + Dtfoot = 1631 ps. The required ablation pressure
to induce an outer-surface adiabat of 10 is 22 Mbar. The laser
prepulse intensity required to induce such an ablation pres-
sure in 60 ps has been determined with LILAC to be
IL

prep TW cm� 450 2. The foot ablation pressure correspond-
ing to an inner-surface adiabat ainn = 1 is 2.2 Mbar, requiring,
according to LILAC, a foot intensity of 6.9 TW/cm2. The solid
curve in Fig. 95.15 represents the laser pulse profile used in
LILAC simulations.

Figure 95.16(a) shows the adiabat profile at shock break-
out obtained from LILAC using the pulse described above: a
60-ps, 450-TW/cm2 prepulse followed by a 6.9-TW/cm2 foot.
The shock-breakout time tshock according to LILAC is about
1632 ps, in excellent agreement with the theoretical prediction
of 1631 ps. The theoretical adiabat profiles [the dashed curve
provided by the first of Eq. (91)] is also in agreement with
LILAC results, as is the prediction of the maximum adiabat
ratio as indicated by the fact that the flat-adiabat region
preceding the adiabat decay is completely ablated off at shock
breakout. The pressure profile at shock breakout is approxi-
mately flat [Fig. 95.16(b)] with a value of about 2.2 to 2.3 Mbar
in compliance with the design requirement. The ablated mass
fraction is given by the abscissa of the vertical dotted line in
Fig. 95.16, indicating an ablated fraction of about 13%, in
agreement with the result of Eq. (86) yielding 12.6%.
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A comparison of the adiabat shapes for two LILAC simulations with 100-ps
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(dashed lines).
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To apply the theory to more-realistic designs, we have also
carried out the optimization for the case of a rising-foot
intensity and higher inner-surface adiabat. We consider a
typical OMEGA cryogenic capsule design with ainn � 2 and a
laser foot intensity that is flat over half its length and then
linearly ramped up to three times its initial intensity at shock
breakout. The corrective factor c can be determined in one
iteration to be about 1.3, leading to an ablated fraction of 18%
[from Eq. (86)], an adiabat ratio of 6.4 [Eq. (81)], and an outer-
surface adiabat of 12.8.

The prepulse pressure and duration from Eqs. (82) and (83)
are approximately 28 Mbar and 79 ps, respectively. The prepulse
intensity required to induce such an ablation pressure in 79 ps
is found with LILAC to be about 750 TW/cm2. Equations (78)
yield a foot duration of 1089 ps, leading to a shock-breakout
time of 1169 ps, and a starting foot pressure of 4.3 Mbar. The
foot is split into a 544-ps flat foot with a 15-TW/cm2 laser
intensity followed by a 544-ps linear ramp to 45 TW/cm2. The
dashed curve in Fig. 95.15 represents the laser pulse used in
LILAC simulations.

Figure 95.17(a) shows the adiabat shape at shock breakout
obtained with LILAC (solid line) with an inner-surface adiabat
of about 2 and the theoretical prediction from Eq. (91). Accord-
ing to LILAC, the outer-surface adiabat is about 13 and the
shock-breakout time is 1160 ps, in excellent agreement with
the theoretical predictions of 12.8 and 1169 ps, respectively.
Figure 95.17(b) shows the pressure profile at shock breakout.
The characteristic pressure bump on the left is due to the
intensity ramp, while the flat region on the right at about 4.3 Mb
is due to the flat portion of the foot.

It is important to observe that the laser intensity required to
generate the desired prepulse ablation pressure is significantly
larger than the one predicted by steady ablation formulas.
Indeed, according to the steady ablation theory
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the intensity required to induce 28 Mbar of pressure is approxi-
mately 205 TW/cm2. Instead, the 79-ps prepulse described
above required 750 TW/cm2 to generate 28 Mbar. This discrep-
ancy comes about because the ablation process does not reach
a steady state in 79 ps. Furthermore, a fast ramp of the laser
intensity during the prepulse causes a hydrodynamic decoupling

between the shell and the laser with the result that most of the
prepulse laser energy goes into heating the coronal plasma
instead of driving the required strong shock. This explains why
a very large increase in laser intensity has only a modest effect
on the prepulse hydrodynamics. If one takes into account the
limitations of the laser system with regard to the maximum
power and power ramping rate, then the maximum prepulse
pressure and outer-surface adiabat are further reduced. All of
these effects need to be accounted for on a case-by-case basis
through careful one-dimensional simulations.

It is important to notice that Eqs. (78) and (81)�(83) should
be used with caution in determining the optimal pulse param-
eters when the resulting laser pulse is limited by either the laser
peak power or rise time. When the prepulse is not flat, Eq. (83)
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for a square prepulse needs to be adjusted to reproduce the
same total prepulse energy. In this case, the theoretical results
are not as accurate as in the case of a square pulse and need to
be refined by numerical simulations. As an example, we
consider a typical OMEGA cryogenic spherical target that
has an outer radius of 430 mm and a thickness of 85 mm. A
square prepulse is designed for an ainn � 2 using Eqs. (81)�(83)
with an adjusted c = 1.42 in order to obtain an ablated mass
fraction of 21%, as indicated by LILAC simulations. The
maximum adiabat ratio follows from Eq. (81) leading to
q* = 5.9 with an outer-surface adiabat of about 11.8. According
to Eqs. (78)�(83), the prepulse duration is about 90 ps with a
foot of 1083 ps. The foot again is divided into a flat portion
lasting half of the foot length followed by a linear intensity
ramp to three times the initial intensity. If one takes into
account the OMEGA power ramping rate limit of approxi-
mately 10 TW over 50 ps, then the prepulse can be divided into
a 70-ps linear ramp to 14 TW followed by a 55-ps flattop. This
is approximately equivalent to a 90-ps square pulse. The foot
starts at 0.36 TW for 542 ps and a linear ramp to 1.08 TW for
another 542 ps. The curve in Fig. 95.18 represents the laser
pulse (prepulse + foot) used in LILAC simulations.
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Optimal laser intensity history from LILAC for a typical OMEGA cryogenic
DT spherical capsule with design specification of ainn � 2, rising-foot
intensity, and experimental power-ramping limitations.

Figure 95.19 shows the adiabat shape for the OMEGA
cryogenic capsule simulated with LILAC using the pulse de-
scribed above. Notice that the outer-surface adiabat is about 12
and the ablated mass is about 21%, in agreement with the
theoretical prediction for an equivalent square prepulse. The
adiabat shape from LILAC (solid line) is also in good agree-
ment with Eq. (91), indicating that the theory applies to
spherical shells as well as planar foils.

Conclusions
The adiabat profile induced by a decaying shock is calcu-

lated including the effects of mass ablation and residual abla-
tion pressure. The adiabat shape follows a simple power law of
the shell areal density m:

a a
d
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Ë

�
¯inn

shellm

m

a
, (93)

where ainn is the inner-surface adiabat, mshell is the total initial
shell areal density, and m is the shell�s local areal density. The
power index da varies from 1.12 for a 100-ps prepulse to 1.20
for a 300-ps prepulse. The calculated profile reproduces the
simulation results with only a few-percent error, and it can be
used to design the optimum prepulse, which leads to the
maximum adiabat ratio between the inner- and outer-shell
surfaces. Our theoretical results on the ideal adiabat shape
without ablation are in qualitative agreement with other pub-
lished work but show improved accuracy when compared with
the numerical solutions.
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