On the Bell-Plesset Effects: The Effects of Uniform Compression
and Geometrical Convergence on the Classical
Rayleigh—Taylor Instability

Introduction

This article considers a simple treatment of the Rayleigh—
Taylor (RT) instability of incompressible perturbations of the
interface between two homogeneous fluids undergoing accel-
eration due to a pressure gradient, including the effects of
uniform compression and geometrical convergence. The growth
rate for incompressible linear perturbations of a planar inter-
face between incompressible fluids is well known from the
work of Rayleigh! and Taylor? and has become a classic
textbook result.>* When the perturbed interface undergoes
compression or geometrical convergence, such as in the case of
an interface embedded in a collapsing cylinder or sphere, the
perturbation growth is modified. These modifications have
been referred to collectivelys’6 as Bell-Plesset (BP) effects.”-8
Both RT and BP effects are known to be important to the
outcome of implosion experiments in inertial confinement
fusion (ICF).>~!! The purpose of this article is to formulate
and analyze BP effects in a simple way that reveals a wide
range of behavior in a variety of geometries.

The term “accelerationless growth” has also been used for
BP effects. This terminology acknowledges that interface
perturbations would evolve due to convergence and compres-
sion in the absence of the buoyant force that drives the RT
instability, but, as will be shown below, the modified RT
growth does not separate naturally into an acceleration-driven
RT contribution and an accelerationless contribution. Never-
theless, the chosen formulation clarifies the physical distinc-
tion between RT and BP effects. To be precise, the term
“accelerationless” will be used below only to denote perturba-
tion growth in the limit of no RT growth.

The description developed in this article is based on the very
similar methods of Bell? and Plesset,3 combining Plesset’s
treatment of interfaces with an arbitrary density jump, rather
than only free surfaces, and Bell’s inclusion of uniformly
compressible background flow. We also adopt Bell’s choice of
a mass perturbation amplitude in order to obtain perturbation
equations of a particularly simple and useful form. In cases
where the local convergence and compression rates are con-
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stant over useful time intervals, the perturbation solutions
evolve exponentially, and scaling of the perturbation with the
interface density and radius can be derived.

The Background Flow

To begin the perturbation calculation describing RT
growth, we postulate one-dimensional irrotational unperturbed
background flow in planar, cylindrical, and spherical geom-
etries where an interface separates homogeneous fluids of
contrasting uniform densities p(¢) and p,(#). The interface is
at coordinate position R(7), and the subscripts 1 and 2 denote
the half-spaces at coordinate values less than or greater than
R(1), respectively. The fluid motion is fully specified by the
interface history R(¢) and the rate of compression yp(t). From
this point on, R(?), }/p(t), and other functions of time alone will
be written without explicitly indicating the time dependence.
This rate of compression is assumed to apply everywhere, or,
in other words,

Yp=P1/P1=p2/P2- (la)

Similarly, the convergence rate is written as
Y& =R/R. (1b)
For the cylindrical and spherical cases, R is the radius of the
surface, while for a planar interface, the radius is effectively

infinite, and y = 0.
The unperturbed flow velocity is

v(x.t)==(x=R)y, +R (2a)

in planar geometry,

v(r,t) = R@) + (%”) (,:_22 - 1J r (2b)

in cylindrical geometry, and
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V()= R(f—jj N (%"j (f—j - 1] r 20)

in spherical geometry. These velocities can be derived from the
velocity potential functions

D(x,1)= @y ()~ (x—RR+(x—R)> 7,/2  (3a)

in planar geometry,
D(r,1) = Dy (1) - (RR +7, R2/2) Inr+(y,/4)r>  (3b)

in cylindrical geometry, and

27 2 23
O (r,1) =Dy (1) + RR, (V_pJ [r— + R—j (3¢)
r 3 r

in spherical geometry using
Vv=-Vo* (4)

These flows can be obtained from the Euler equation in one
dimension

8_v+v8_v:_aU(x) _1dp(x1)
ot dx ox p  Ox

, 5)

given the appropriate pressure p(x,f) and external potential
field U(x,r). In planar geometry, it is easy to verify that the
desired flow is obtained from the pressure

p(x1)=po = pep(x=R)+p(7p =75 )x =R 2 (6a)

and the external potential field

U(x,t)=Uy - gy, (N
where
_ 1 9p(R,1)
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and
__ouR)
B ox

are the separate components of the fluid acceleration at the
unperturbed interface position due to pressure and the external
potential, respectively. Using

R=v(R,1), ®)
the Euler equation gives

R=gy +gp. 9)

In cylindrical geometry, the required combination of pres-
sure and potential field is

U+£=(U+£ —[RR+R2+prR]lnr
P p r=R
. 27
i Te Yo |2
2 2
. 2
1| R? () | R?
——|=—+y,RR—-| 2| R*|| 5|, 6b
2[2 "o [2] ][ﬂ ©0)

. . )
U+£:(U+£]  RR® (2RR® 4 R’R
P P r=R

) 3
+ []%pj% [1 + ZrL;] (6¢)

Again, in both the latter cases, Eq. (9) is obtained from the
Euler equation.
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The one-dimensional background flow in planar geometry
conserves mass everywhere according to

Vv=-7,. (10a)

but, for arbitrary convergence and compression rates, a line
source is required for cylindrical flow,

Vov=—y, +ms?(r), (10b)
where
m
— =2Yr+Y,, (11a)
T pR2 R 7p
and a point source is required for spherical flow,
Vv =y, +ms(r), (10¢)
where
3m
=3yYpr+7%,. 11b
47rpR2 YR }/p ( )

The cylindrical and spherical velocities given by Egs. (2b) and
(2¢) can be written simply in terms of m as

-
v(r,t)=——-y,— 12
(r.1) 2w 1P7 (12a)
and
v(r,1) mo__, (12b)
’ ampr? P 3

To consider a broad range of BP effects, it is important to be
able to specify the compression and convergence rates inde-
pendently, and this requires the mass source m at r = 0.
Imposing m = 0 restricts the problem to either constant cylin-
drical mass, 2yg+7, =0, or constant spherical mass,
3Yr +7p =0. According to Egs. (6), placing a mass source at
r=0to create desired background flows introduces unphysical
pressures at r = 0. These flows are unlikely to resemble any
intended application globally, but they suffice for the perturba-
tion calculations if they are reasonably descriptive of condi-
tions in the neighborhood of the density jump because discrepant
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flow beyond a few perturbation wavelengths from the density
jump will be largely decoupled from the perturbations.

It is worth noting a curious property of Eq. (6a) for the
pressure driving the planar flow. For planar flow that is either
converging or diverging at a constantrate ¥ p =0, the pressure
does not depend on the sign of y,; in both cases, the pressure
driving the flow exerts a diverging force, even if the flow is
converging. In both cases, the distinction between diverging
and converging flow comes from the initial conditions of the
flow, not the pressure.

Perturbation Equations

To obtain the equations of motion for the incompressible
perturbations of these interfaces, we follow the calculation of
Plesset for a spherical interface.® Following the work of
Bell,” we generalize Plesset’s method to include cylindrical
and planar geometries and to include compression of the
unperturbed background flow at a spatially uniform rate.

The velocity potential function @ describing irrotational
flow with uniform mass density is governed by the Bernoulli
theorem™*12

£+U+l‘v2‘

p 2

L

o5 = (13)

where all the quantities have been defined above. The velocity
potential includes the potential for the background flow plus
the potential perturbation @y, = P+ ¢, (55, t). The subscript
¢ denotes the harmonic order of the perturbation mode corre-
sponding to cos(27ly/L), cos(£6), or Y/"(6,¢) transverse
harmonic dependence in planar, cylindrical, and spherical
geometry, respectively. The perturbation is assumed to be
incompressible, which requires

V3¢, =0. (14)

Imposing vanishing boundary conditions on ¢, at large dis-
tances from the interface and continuity at the origin, if
applicable, we obtain solutions for each side of the interface
for planar, cylindrical, and spherical geometries:

0ps(%,1) = bys (1) cos (2mty/L),  (152)
0r+(%,1) = bys (£)r*! cos(16), (15b)
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and

s (X.1) = bzi(f)r[z’_(ﬁl)])’zm (6.9). (15¢)

For the planar perturbation, we have imposed a zero boundary
condition at y = 0 and y = L so that the set of perturbation
modes would form a discrete spectrum with an integer index /,
preserving a unity of notation among the three geometries with
no loss of generality. For planar and cylindrical geometry, we
have disregarded z-dependent perturbations.

The position of the perturbed interface is r = r (), where

r(t)= R+a,(t)cos(2nly/L), (16a)
ry(t)=R+ay(t)cos(16), (16b)

and
(1) = R+ a,(1)Y/"(6.9) (16¢)

for planar, cylindrical, and spherical geometries, respectively.
The interface displacement a, is the spatial amplitude of
the perturbation.

Whenever it is clear in the following development that a
coordinate-dependent expression applies to all three geom-
etries, the symbol r will be used to denote the coordinate in the
direction of the unperturbed flow, rather than repeat the exact
same expression using the Cartesian coordinate symbol x for
planar flow.

An ordinary second-order differential equation for a, is
obtained from Eq. (13), first by evaluating P on both sides of
the interface in terms of the perturbed velocity potential to first
order in small distances from the unperturbed interface. These
expressions for P are then matched at the interface r = r,. A
required expression for the function b, in terms of the ampli-
tude a, is obtained by equating the interface velocity to the
fluid velocity at the interface:

dr, 8[<D(rs,t)+¢éi(rs’t)]_

17
dt or 1n
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This matching of pressures eliminates dp,, leaving an ordinary
homogeneous second-order differential equation for a,.

Equations (6) show that one can write a pressure that
produces the desired background flow. For the purposes of
constructing linear equations for flow perturbations near r = R,
the linear approximation

U(x,t)=Uy —rgy, p(x.t)=py—(r—R)pg,  (18)

suffices. As Eq. (9) for the interface acceleration suggests, the
background flow does not depend on the potential and the
pressure gradients separately, only their sum. The RT growth
rate, however, depends most directly on 8p and not g;. In
the absence of pressure gradients g, = 0, the fluid is in a state
of free fall, where there are no buoyant forces to drive the
RT instability.

To begin constructing the expression for pressure continu-
ity at the perturbed interface, we begin by rewriting Eq. (13) as

P(r,t)+dp, 1| 2] 0P
BLUTP -y, +rgy -~V + 22 19
P 0 trgu 2‘ ‘ o (19)

All quantities are evaluated at r = r; by expanding them to
first order in the perturbation about the unperturbed interface
position r = R. We evaluate the pressures in the fluid half-
spaces r < R and r > R, denoted by subscripts 1 and 2,
respectively. Matching the harmonic components of the pres-
sure perturbation &p,; =dpy, gives the perturbation equa-
tions, which are

d\d
(—yp +E)E(azl3) =75(asp), (20a)

(20b)

and

(—Vp ~YRT %)%(WPRZ) =75 (azPRz) (20¢)
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for planar, cylindrical, and spherical geometry, respectively.
The resulting perturbation equations assume this simple and
transparent form when written in terms of the “mass” ampli-
tude z,, where

z=ap. zy=a;pR. or z;=a,pR’ 21)

for the three chosen geometries. The interface density p can
be the mean density p = (pl + Py ) / 2 or any other fixed linear
combination of p; and p,. Since a uniform compression rate
applies everywhere, according to Eq. (1a), the only effect of
alternative choices for the interface density is to introduce a
constant factor into the definition of the mass amplitude
[Eq. (21)]. The units of z, are mass only for spherical geom-
etry. They are mass per area for planar geometry and mass per
axial length for cylindrical geometry. In this form, the “driv-
ing” terms are proportional to the RT growth rates ¥, where

2 (Pz - Pl)
Yo =k—=8p (22a)
0 (Pz + Pl) b
2 /L (Pz —Pl)
Yo =— gn> 22b
"R (p2+p1)°" (226)
and
y2 = We+1)  (p2—p1) 220)

R [ip, +(f+1)P1]gp

for the three geometries. Equation (22a) is the familiar “clas-
sical” RT growth rate for incompressible planar flow. The
spherical results [Eqgs. (20c) and (22c)] are equivalent to the
result of Plesset® for incompressible fluid (7p = 0), even
though they are not easily recognized as such. For the special
case of a free surface (either p; =0 or p, = 0), Egs. (20) and
(22) become Bell’s” final result.

The driving terms are easily identified as being the only
terms containing either an acceleration or a density jump, both
of which are required for the buoyant force driving the RT
effect. Compared with alternative formulations,3-11 Egs. (20)
and (22) display a more physically meaningful isolation of the
RT effect into a single term. Even though the RT effect can be
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isolated in this way, the total perturbation growth rates do not
separate naturally into RT and BP contributions. The form of
Egs. (20) does allow equations governing accelerationless
growth to be obtained by setting }, = 0, but the acceleration-
less limit cannot be simply combined with the classical RT
growth rate to obtain a correct result.

Equations (20) are easily solved over time intervals where
the compression and convergence rates, ¥, and J, respec-
tively, and the RT growth rate 7y, are constant. The resulting
solution pairs are exponential in time with constant growth
rates,

1 2 1 o
Y+=2YpEY0+ V) (23a)
2 4
for both planar and cylindrical geometry and
1 2 1 2
re=5(rp +7/R)i\/7/0 +5(7p+7z) (23b)

for spherical geometry. Since }/8 can be negative, the growth
rates can be complex, giving perturbations exhibiting expo-
nential or sinusoidal behavior, or both. In characterizing an
interface as stable or unstable, Plesset argues that exponential
behavior suggests unbounded growth of one of the solutions,
which indicates instability. Conversely, oscillation suggests
stability. Even though Egs. (20c) and (22c) are consistent with
the corresponding equations of Plesset,® one can draw different
conclusions about the criteria for stability based solely on the
inspection of the respective equations. Except for the case of
planar incompressible flow, exponential growth, for example,
does not necessarily imply net growth. Equations (23) can be
a guide in formulating general stability criteria for intervals
where y,, Yz, and } are constant, but there are other ap-
proaches. In the next section where BP effects in the large-y,
limit are considered, the solutions appear as products of power-
law factors of R and p and a factor that is exponential in yyt. If
one does not regard power-law density and radius scaling
behavior as either stable or unstable, then the question of
stability is simply the question of the sign of }’3 , without
regard for BP effects.

Solving fully time-dependent perturbation equations

[Egs. (20) and (22)] provides a more complete and thus more
correct description of RT growth than the common practice of
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estimating unstable growth from an exponential growth factor,
such as

a(t) = a(0)exp U 7(?) dt'} , (24)
0

where the positive growth rate is used in the integrand. The
fully time-dependent solution permits specifying amplitudes
with arbitrary initial values and time derivatives, while the
growth factor implies a particular initial condition. For ex-
ample, the solution pair for incompressible planar flow has
equal and opposite growth rates, so a solution with a static
initial amplitude is composed initially of equal parts of the
growing and decaying components of the general solution.
Equation (24), on the other hand, attributes the entire initial
amplitude to the growing component of the full solution. As a
result, the growth-factor solution will become too large by a
factor of 2 if it is used to represent growth of a perturbation that
is initially static. More generally, if the acceleration changes
abruptly from one constant value to another, matching the
solutions before and after the change cannot be done without
considering the fully time-dependent solution. A second ad-
vantage of the fully time-dependent formulation is that
Richtmyer-Meshkov-like!? behavior is obtained for impul-
sive acceleration. For an acceleration with an appropriate
oscillating component, the fully time-dependent formulation
exhibits the dynamic stabilization effect obtained by Betti et
al.,"* another effect that cannot be described by an exponential
growth factor.

Equations (20) and (22) were originally derived for use in
a perturbation growth model for a saturable multimode model
of RT instability!6 applicable to simulations of inertial con-
finement fusion experiments.!>

Scaling

In this section, we shall examine both the mass and spatial
perturbation amplitudes in two limits where the BP effects
appear entirely as scaling factors with power-law dependences
on the interface density and radius. The first is the
accelerationless limit of small ), and the second is the limit of
rapid RT growth, relative to the compression and convergence
rates. As will be shown below, the accelerationless BP effects
are different from BP effects occurring in combination with the
RT instability.

In the limit where the interface acceleration vanishes, or
when the density jump at the interface vanishes, y, approaches
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zero. In this limit, assuming constant compression and conver-
gencerates, the pairs of solutions are of the form z4 o< exp ()/J_rt),
where

72 =[75.0] (25a)
for both planar and cylindrical geometry and
ve=[7p+78:0] (25b)

for spherical geometry. The leading-order RT corrections to
Eqs. (25) are second order in },. From assuming that ¥, and
Yr are constants, we have R o< exp ("y Rt) and pecexp (ypt)
and the solution pairs are

zi < [p.1] (26a)
for planar and cylindrical geometry and
2+ «<[pR1] (26b)

for spherical geometry. For uniform compression of a constant
cylindrical mass M = pR? or spherical mass M = pR>, the
solutions z, are

2z = [R71] 27)

for both cylindrical and spherical geometry. The spatial ampli-
tudes are related to the mass amplitudes according to Eq. (21),
which gives

as =[1.p™"), (282)
ay = [R_l,(pR)_l], (28b)

and
a = [R_],(pRz)_l}. (28¢)
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For uniform compression of a constant cylindrical mass or
spherical mass, the solutions a;,, are

ayz = [R_I’R] (29)

for both cylindrical and spherical geometry.

While the accelerationless limit gives a view of the BP
effects in the absence of RT growth, a more interesting limit is
that of a dominant RT effect or, equivalently, of large ¢ where
we have ¥ > 7, % > g, and }/3 > ¥, In this limit, Egs. (23)
become, to leading order in the small numbers Yy p / Yo and/or
Yr/Y0-

1
Y= E Yp %o (30a)
for both planar and cylindrical geometry and
1
ve=(vp+7r)E70 (30b)

for spherical geometry. In an imploding sphere, such as in the
deceleration phase of an ICF implosion experiment,!”-18 for
example, we estimate the magnitude of the small parameter of
this limit by writing the classical growth rate as

) R
=(A—, 31
Yo R (3D
where A is the Atwood number

(Pz —Pl)

A= .
(Pz +Pl)

(32)

For the purpose of characterizing a large-/ limit, it is sufficient
to assign a single time scale 7 to all time derivatives,
R~R/t®>, R~R/t, p~p/T, (33)

so that the small number in this limit is

Yp/Y0 ~YR/Y0 ~ (eA) ™2, (34)

which is small for the large mode numbers of interest in ICF
implosions.!” In this limit, the solution pairs are
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24 o< pY2etro! (35a)
for planar and cylindrical geometry and
2y o p]/ZR]/ZeiyOt (35b)

for spherical geometry. For uniform compression of a constant
cylindrical mass or spherical mass, the solutions z,, are

Zys = R (36)

for both cylindrical and spherical geometry. The correspond-
ing spatial amplitudes are

ay = p 20 (37a)
ay =p V2R1FTO! (37b)

and
ay = p VPRIV (37¢)

For uniform compression of a constant cylindrical mass or
spherical mass, the solutions a;,, are

ays =€, (38)

which is an interesting example of a spatial amplitude evolving
virtually free of any BP effects.

In this large-/ limit, the BP effects appear separately from
the RT growth factors as scaling factors in powers of p and/or
R that are the same for both solutions of each pair. The fact that
the BP effects are the same for both solutions is a property
unique to the large-¢ limit. Except in this one limit, Egs. (23)
predict different BP effects for the two solutions.

Discussion

In the accelerationless limit where Y, = 0, the density and
radius scaling of the perturbation solutions of constant mass
amplitude are readily visualized. These solutions are the sec-
ond solutions of Egs. (26) and (27) and their spatial-amplitude
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counterparts in Eqs. (28) and (29). The spherical cases are
illustrated schematically in Fig. 94.17, where a layer of fluid is
highlighted to suggest the “peak-to-valley” extent of the per-
turbation. Figure 94.17(a) shows an incompressible spherical
layer thickening as it converges to maintain constant density,
and Fig. 94.17(b) shows the same layer compressing in pro-
portion to the radius of the uniformly compressing homoge-
neous sphere in which it is embedded. It is important to
remember that this solution of constant mass amplitude is
obtained only with appropriate initial conditions. The general
solution for arbitrary initial conditions exhibits a more compli-
cated mixture of behaviors. The fact that the convergence and
compression effects are different for the two solutions in each
pair is the rule, not the exception. It is a unique property of the
opposite limit, where the RT rate is much larger than the
compression and convergence rates, that both solutions exhibit
the same BP scaling with density and radius.

(a) (b)
Incompressible shell Compressing core

dp
dt

TC4492

. d
=0—ay <R?2 7 (R =0 ay <R

Figure 94.17

The cases of a perturbed surface embedded in an incompressible shell and a
compressible sphere suggest, respectively, ag o< R2 and ay o R scaling of
the spatial amplitude in the absence of a Rayleigh—Taylor growth term. Each
of these solutions are paired with another independent solution, however, and
the scaling behavior is more complicated if contributions from these other
solutions are introduced by the initial conditions of the amplitude.

A simple demonstration of the importance of BP effects
and the differences obtained from alternative initial conditions
are shown in Fig. 94.18. The two plots show the growth of the
spatial amplitude of a perturbation of an imploding, decelerat-
ing spherical interface. The implosion parameters correspond
roughly to those of ICF capsule implosions near peak compres-
sion. The surface is assumed to compress by a radial factor of
10 while decelerating uniformly at 2.0 x 1016 cm/s? from a
radius of 400 um. The perturbation growth was calculated by
direct integration of Eq. (20c). Each plot shows the amplitude
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growth for an incompressible spherical shell (y, = 0), for a
uniformly compressing sphere (37; + ¥, = 0), and for the
incompressible planar limit (y; = 7, = 0) with no BP effects.
Figure 94.18(a) shows results obtained by applying a static
initial condition to the spatial amplitude, and Fig. 94.18(b)
shows the same results obtained by applying a static initial
condition to the mass amplitude. The RT growth rate was set
to }/8 = 4R/ R, choosing /A = 4 to create an intermediate case
between the accelerationless and the large-growth limits. The
results show that BP effects vary in importance, depending on
which compressibility assumption is made, and that they are
sensitive to the choice of initial condition. If the amplitude is
initialized as a static mass amplitude, the incompressible shell
growth is particularly large. These results should not be ex-
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. 1/
102 E
g lE
§ B C P 3
S 10;— <200 %
: 15
I E ~
10 ¢ |
01 [ ! ! L ! | L L L 0
(b) 103 K T T T T T T T T 400
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£ 1ol looo =
§ 1 P W
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: 1 &
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o ]
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0 1 2
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TC4493

Figure 94.18

Significant differences in perturbation growth are obtained for different
compressibility cases and with different initializations. Results for perturba-
tions of an incompressible shell (I) and a compressible sphere (C) are shown,
compared with the results of the “classical” Rayleigh—Taylor model, or the
incompressible planar approximation (P), where convergence and compres-
sion effects are ignored. The importance of initial conditions is seen by
comparing results obtained using (a) static initial spatial amplitudes and
(b) static initial mass amplitudes.
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pected to conform closely to the scaling results [Egs. (37c) and
(38)] because the compression, convergence, and RT rates are
notconstantand yg does notoccur close to either of the scaling
limits of the previous section, but Eq. (38) does suggest that the
amplitudes from the compressible sphere and incompressible
planar models should tend to agree as they seem to do in both
plots. Also, Eq. (37c) suggests that the BP effect on the
amplitude of a spatial perturbation of a spherical surface
converging by afactor of 10 should increase the amplitude over
the other two cases by about 1.5 decades, which is approxi-
mately what is seen in Fig. 94.18(b).

Actual ICF implosions are, of course, more complicated
than this simple illustration. The deceleration of the compress-
ing core occurs during a brief “deceleration” phase following
a longer “coasting” phase between the period of acceleration
due to the driver and the onset of deceleration by the compress-
ing core. The coasting phase can be characterized crudely by an
incompressible shell in the accelerationless limit (,=0 and ¥,
=0), and the deceleration phase would resemble, in contrast,
the case of the uniformly compressing sphere (3 + 7,=0). In
a realistic simulation, the convergence and compression rates
vary continuously, and the true description of an unstable
surface will be somewhere between the limits of an incom-
pressible shell and a uniformly compressible sphere of con-
stant mass.

Overall, BP effects in the accelerationless limit and in the
limit where the RT growth is dominant exhibit distinct differ-
ences in the nature of the effects and in their importance.
Between these two scaling limits, the latter is the more appli-
cable limit when analyzing observations of hydrodynamic
instability in ICF implosion experiments.

The BP effects have been called the “Bell-Plesset instabil-
ity,”® which is not a correct description. They may be better
described as a scaling behavior, for example, but they are
certainly nota true instability in the sense that the RT instability
is a true instability whose growth is driven by positive feed-
back that grows in proportion to its amplitude.

Summary and Conclusion

A formal description of the BP effects of compression and
geometric convergence on the RT instability has been ob-
tained. Even though the chosen model is restricted to incom-
pressible perturbations of an interface separating homogeneous
fluids and to a spatially uniform compression rate for the entire
fluid, the model is general enough to encompass a usefully
broad range of behavior. Results for three geometries (planar,
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cylindrical, and spherical) are presented in parallel, and the
fluid is allowed to compress and converge independently. The
governing perturbation equations [Eqs. (20) and (22)] are only
slightly modified from the classical RT equations as given by
Egs. (20a) and (22a) for incompressible (}/p = 0) planar flow
whose solutions exhibit simple exponential or sinusoidal evo-
lution of the interface distortion. The RT growth rates for the
three chosen geometries are very similar and, as expected,
become identical in the limit of large harmonic order / or k,
where k = (/L. The first of two modifications of the planar
incompressible RT equation that add the BP effects is to write
it in terms of a mass amplitude. It is not surprising that the
perturbation equations would be simplified by writing them in
terms of a mass amplitude because an embedded perturbed
interface would simply compress and converge with the flow,
with the peak-to-valley displacement of the interface demar-
cating a layer of constant mass. The second modification is to
add a first-time-derivative term appropriate for the chosen
geometry, which results in a pair of growth rates that differ by
more than just a sign flip.

With constant compression, convergence, and growth rates,
the simple form of Egs. (20) leads to BP effects expressible as
power-law scaling with density and radius. These scalings
vary, depending on the underlying geometry, the assumed
interdependence of the compression and convergence rates,
and which limit of either slow [Egs. (25)—(29)] or rapid [Egs.
(30)—(33)] RT growth applies. In the limit of slow RT growth
or, equivalently, in the limit of true accelerationless growth,
each solution in a pair has its own distinct BP scaling, and only
one solution of the pair exhibits the constant mass amplitude
expected for an embedded surface. The scaling behavior is
distinctly different for RT growth that is much faster than the
convergence and/or compression. While rapid RT growth
might amount to several e foldings in, for example, an ICF
implosion, the BP effects can be much smaller and still amount
to a significant effect. In this limit, the BP scaling becomes
identical for each of the pair of solutions. While the variety of
scalings among the solutions is simpler where RT growth
dominates, the scaling is neither as intuitive nor as recogniz-
able as the constant mass amplitude solution of the
accelerationless limit. Perhaps the most surprising result is Eq.
(38), indicating no first-order BP effect at all for the uniform
compression of a constant spherical or cylindrical mass.

Even though the underlying assumptions behind the results
shown here are somewhat restrictive, this presentation of a
unified body of results for several geometries and flow charac-
teristics hopefully has conveyed a clearer sense of the origin,
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nature, and the surprising diversity of BP effects and their
tendency to defy any simple characterization applicable over a
wide range of circumstances.
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