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Introduction
A quantum dot is an artificially created semiconductor struc-
ture in the size range of 5 to 100 nm. As a whole, it behaves
like an atom since the quantum effects of the confined electrons
are enlarged with respect to the interactions of the electrons
inside each atom. Since the conception of quantum dots in the
early 1980s, the study of their physical properties continues to
be a very active field of research. Quantum dots can now be
synthesized by various methods and have a multitude of
potential technological applications, which include lasers with
high optical gain and narrow bandwidth, and wavelength
tunability.1 Also, dipole–dipole interaction between neighbor-
ing quantum dots is being explored for applications in quantum
computing.2 Furthermore, quantum dots are potential single-
photon sources, which may be used to create nonclassical
electromagnetic states.3

Near-field optical techniques have extended the range of
optical measurements beyond the diffraction limit and stimu-
lated interests in many disciplines, especially material sci-
ences and biological sciences.4,5 Spatial resolution is increased
by accessing evanescent modes in the electromagnetic field.
These modes are characterized by high spatial frequencies and
therefore enable the probing of subwavelength structures.
Near-field optical techniques have also been employed to
study the optical properties and dynamics of charge carriers in
artificial nanostructures such as quantum wells, quantum wires,
and quantum dots (see, for example, Refs. 6–8).

Nanostructures interacting with optical near fields do not
necessarily behave in the same way as nanostructures interact-
ing with far-field radiation. In Ref. 9, for example, the response
of a quantum well when excited by the diffracted field of an
aperture enhances quadrupole transitions, giving rise to a
modified absorption spectrum of the quantum well. Further-
more, absorption properties may also be modified due to
nonlocal spatial dispersion as described in Ref. 10. Recently,
Knorr et al. formulated a general theoretical, self-consistent
multipolar formalism for solids. This formalism can even be
extended to account for delocalized charges.11 The spectral
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response originating from the interaction between semicon-
ductor quantum dots and the optical field generated by a small
aperture has been discussed in Refs. 12–14. References 13 and
14 account for the highly inhomogeneous excitation field
produced by the subwavelength aperture.

This article focuses on the interaction of a spherical semi-
conductor quantum dot with a highly confined optical near
field. It has been shown that such fields can be generated near
laser-illuminated, sharp-pointed tips.15–17 Here, we adopt this
geometry and approximate the fields near the tip by an oscil-
lating electric dipole oriented along the tip axis. In Ref. 18, it
has been demonstrated that this is a reasonable approximation
and that the dipole moment can be related to the computationally
determined field-enhancement factor. Furthermore, our analy-
sis relies only on the field distribution and not on the actual
enhancement factor. We will consider a spherical quantum dot
in the strong-confinement limit.

The interaction between a quantum dot and the optical near
field is described semiclassically using the multipolar expan-
sion. For far-field excitation, the first term in this expansion,
the electric dipole term, gives rise to a response that is consid-
erably stronger than the response produced by subsequent
terms. This is due to the fact that the physical dimension of the
quantum dot is much smaller than the wavelength of optical
radiation and also due to the weak spatial variation of the
exciting far field. The spatial variations of optical near fields,
however, are much stronger, and, as a consequence, it is
expected that the contribution of higher terms in the multipolar
expansion cannot a priori be neglected. In this article, the
strength of electric quadrupole absorption compared with the
strength of the electric dipole absorption will be analyzed. This
study is motivated by two basic questions: (1) To what extent
are standard selection rules modified by higher-order multipo-
lar transitions in confined optical fields? and (2) Can optical
resolution be improved by selectively exciting higher-order
multipole transitions? To keep the analysis as simple as pos-
sible, we will neglect the Coulomb interaction between hole
and electron as well as the spin of these particles.
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The article is organized as follows: In the next section, the
semiclassical multipolar Hamiltonian formalism is presented.
In the same section, the wave functions for the hole and the
electron in an ideal spherical quantum dot are reviewed, and
the field operator representation is outlined. In subsequent
sections, the absorption rate in the electric dipole approxima-
tion is discussed, and the absorption rate arising from the
electric quadrupole term in the multipolar expansion is de-
rived. The theory is applied to a quantum dot near a laser-
illuminated metal tip. Approximated parameters for GaAs
are used to estimate the absorption rate for electric dipole
transitions and electric quadrupole transitions. In the last
section, results are discussed and conclusions and future
work are presented.

Preliminary Concepts
1. The Multipolar Hamiltonian

A semiclassical approach is used to describe the interaction
of a quantum dot with the electromagnetic field. In this ap-
proach, the electromagnetic field obeys the Maxwell equa-
tions, and the Hamiltonian of the system Ĥ( )  can be separated
into two contributions as

ˆ ˆ ˆ ,H H HI= +0 (1)

where Ĥ0  and ĤI  are the unperturbed Hamiltonian (absence
of fields) and the interaction Hamiltonian, respectively. In the
Coulomb gauge, they are defined as
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where V (r) is the potential energy, p̂  is the canonical momen-
tum, A (r, t) is the vector potential, and φ (r, t) is the scalar
potential. The multipolar Hamiltonian is obtained by using the
canonical transformation Û iz= ( )exp h  in which z is given
by19,20
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then this choice of A (r,t) and φ (r,t) satisfies condition (4). By
substituting Eqs. (5) and (6) into Eq. (3), we obtain

ˆ ˆ ˆ ˆ .H H H HI
E M Q= + + +K (7)

Here Ĥ E , Ĥ M , and ĤQ  are the first three terms of the
multipolar expansion, namely, the electric dipole, the magnetic
dipole, and the electric quadrupole, respectively, which are
defined as

ˆ , ,H tE = − ( )⋅ =d E r
r R (8a)

ˆ , ,H tM = − ( )⋅ =m B r
r R (8b)

ˆ , ,H tQ = −∇ ( )⋅
=1 1

1
QE r

r R
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where d, m, and Q  are the electric dipole moment, the
magnetic dipole moment, and the electric quadrupole moment,
respectively, with respect to a reference charge distribution at
R. The nabla operator ∇ 1 acts only on the spatial coordinates
r1 of the electric field. It is important to mention that m
depends on the canonical momentum. For weak fields, how-
ever, the canonical momentum can be approximated as the
mechanical momentum.

2. The Quantum Dot Wave Functions (Strong Confinement)
We assume that a spherical quantum dot is made of a direct

band-gap semiconductor for which the bulk electric dipole
transitions are allowed between the valence band and the
conduction band. In a generic manner, we assume that the
valence band has p-like character and the conduction band has
s-like character. The latter assumption is commonly encoun-
tered for several semiconductors such as the GaAs. We con-
sider that an electron and a hole are completely confined in a
sphere with radius a by the potential energy
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where r is the radial coordinate. Also, we assume that the
electron (hole) has the same effective mass me (mh) as in the
bulk material. This consideration is valid if the volume of the
sphere is much larger than the volume of a primitive cell in the
crystal. Strong confinement is achieved if the Bohr radii of
electron (be) and hole (bh) are much larger than the radius of the
quantum dot a. By assuming the aforementioned conditions,
the wave function of the electron in the conduction band can be
expressed as

Ψe
c

e

V
ur r r( ) = ( ) ( )1

0
0, .ζ (10)

Here uc,0(r) is the conduction-band Bloch function (with
lattice periodicity) having the corresponding eigenvalue k = 0,
and V0 is the volume of the unit cell. Similarly, the correspond-
ing wave function for the hole in the valence band is

Ψh h

V
ur r r( ) = ( ) ( )1

0
0v, ,ζ (11)

with uv,0(r) being the valence-band Bloch function with eigen-
value k = 0. ζe(r) and ζh(r) are the envelope functions, which
vary spatially much slower than uv,0(r) and uc,0(r). Roughly,
the energy difference between adjacent electron {hole} energy
levels is

h h2 2 2 2m a m ae h( ) ( )[ ] .

If this energy difference is much larger than the Coulomb
interaction e a2

0
24π ε ∈( ), the electron–hole interaction can

be neglected. Under this assumption, the envelope function
ζe(h)(r) for the electron (hole) satisfies the time-independent
Schrödinger equation in which the potential energy is given by
Eq. (9). The solution in spherical coordinates (r, θ, φ) is given
by
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Here Yl,m(θ, φ) is the spherical harmonics and the radial
function Λnl(r) is
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jl is the lth-order spherical Bessel function, βnl is the nth root
of jl, i.e., jl (βnl) = 0. The corresponding energy levels εe,h

are found to be
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where εg is the bulk energy band gap. Figure 91.44 shows the
resulting level scheme. According to Eqs. (14) and (15), the
energy is independent of the quantum number m, thus the
energy level nl is (2l+1)-fold degenerate.
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Figure 91.44
Energy level diagram of a spherical quantum dot according to Eqs. (14) and
(15). Each energy level is characterized by the quantum numbers n and l, and
its degeneracy corresponds to the quantum number m. Unlike the case of a
hydrogen atom, the quantum number n does not restrict the number of
suborbitals l.
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3. Field Operator Representation
The annihilation carrier field operator Ψ̂  can be expressed

as a linear combination of hole creation operators in the
valence band and electron annihilation operators in the con-
duction band, i.e.,21,22
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where f̂nlm  is the annihilation operator for an electron in the
conduction band with envelope function ζ nlm

e r( ). On the other
hand, ˆ†gnlm

 is the creation operator for a hole in the valence
band with envelope function ζ nlm

h r( ). The creation carrier
field operator ˆ †Ψ  is the adjoint of Eq. (16).

Absorption in the Electric Dipole Approximation
We consider a monochromatic electric field oscillating with

frequency ω as

E r E r, ˜t e i t( ) = ( ) +− ω c.c. (17)

Here Ẽ r( )  is the spatial complex amplitude and “c.c.” means
complex conjugate. By setting the origin O at the center of the
quantum dot and using the rotating-wave approximation, the
electric dipole transition rate αE for photon absorption is21,22
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where δ̃  is the Kronecker delta, δ is the Dirac delta function,
and Ke is the absorption strength given by
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Here mcv is defined as
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with UC denoting the volume of the unit cell. In Eq. (20), we
have used the fact that ˆ ˆr p≡ −i m0ω (m0 and e are the rest
mass and the charge of the electron, respectively). From
Eq. (18), we notice that the absorption strength (Ke) depends
only on the bulk material properties of the quantum dot. That
is, it depends on the Bloch functions uco and uvo and is not
influenced by the envelope functions ζ nlm

e h, r( ). Also, Eq. (18)
indicates that the allowed transitions are those for which
electron and hole have the same quantum numbers, i.e.,

n r l s m t= = =and and .

These relationships define the selection rules for electric
dipole transitions in a semiconductor quantum dot.

Absorption Arising from the Quadrupole Term
1. Electric Quadrupole Hamiltonian

The electric quadrupole interaction Hamiltonian ĤQ  can
be represented as

ˆ ˆ ,†H H d rQ Q= ( ) ( ) ( )∫ Ψ Ψr r r 3 (22)

H tQ r r E r
r

( ) = −∇ ( ) ( )⋅
=1 1 01
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where the Q r( )  is the quadrupole moment

Q r rr( ) = 1

2
e . (24)
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Here, and in the following, the subsequent listing of two
vectors [as in Eq. (24)] denotes the outer product (dyadic
product). The interband terms are found by substituting
Eq. (16) and its adjoint into Eq. (22), thus
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where “h.c.” denotes the Hermitian conjugate. We calculate
the integral of Eq. (25) by decomposing it into a sum of
integrals over the volume occupied by each of the unit cells. By
applying the coordinate transformation r� = r−Rq, where Rq is
a translational lattice vector (the lattice remains unchanged
when it is translated by Rq), Eq. (25) becomes

ˆ ˆ ˆ

,

† †
,

,

H e f g u

u

d r t

Q
nlm rst

qrstnlm
c q

nlm
e

q

q q

rst
h

q

= −∇






′ +( )

× ′ +( )

× ′ +( ) ′ +( )

× ′ +( ) ′ 

( )

⋅ ∑∑∑ ∫ ∗

∗

=

1 0

0

3
1

01

UC

+  h.c.

r R

r R

r R r R

r R E r
r

ζ

ζ

Q v

(26)

Since ui,0 (r� + Rq) = ui,0(r�) (i = c,v), and the functions
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e
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each unit cell volume, Eq. (26) can be approximated as
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Here Pcv is given by Eq. (20), and Qcv  is defined as
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The term containing RqRq has vanished because of the or-
thogonality of the Bloch functions, i.e., u ui j ij, ,

ˆ
0 0 =δ ;

j = c,v. The Qcv  vanishes since we are assuming that the
valence band is p-like and the conduction band is s-like. Thus,
using Qcv = 0 , and replacing Σq dR→ ∫ , Eq. (27) becomes
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Here Dnmlrst is defined as

D R R Rnmlrst nlm
e
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h d R≡ ( ) ( )∗∫ζ ζ 3 , (30)

with the integration running over the volume of the quantum
dot. Equation (29) is the final expression for the electric
quadrupole Hamiltonian ĤQ . The factor Dnmlrst depends
only on the envelope functions. By using the definition of
ζ nlm

e h, R( )  given by Eq. (12), Dnmlrst becomes



MULTIPOLAR INTERBAND ABSORPTION IN A SEMICONDUCTOR QUANTUM DOT:  ELECTRIC QUADRUPOLE ENHANCEMENT

144 LLE Review, Volume 91

D n n

n

nmlrst nlrs lm st
st

x y

m t l s l s

t l s

l s

A B B
C

l
i

l m l m

l m l m

=
+( )






±[ ]

× +[ ]{
+ − +( ) − +( )[

− +( ) + −( ) ]}

+( ) −( ) +( )

( ) −( )

+( )

2 2 1

1 2

1

1 1 1

1

1

˜ ˜ ˜

˜ ˜

˜

δ δ δ

δ δ

δ

m-1

+ zz lm mt l s l sC
l m

l

l m

l
˜ ˜ ˜ ,δ δ δ+ +

+
+ −

−









−( ) +( )
1

2 3 2 11 1 (31)

where the coefficients Anlrs, Blm, and Clm are given by
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2. Electric Quadrupole Selection Rules and Absorption Rate
Using again the Fermi Golden Rule, the electric quadrupole

transition rate (αQ) for photon absorption reads as
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Here |0� is the ground state of the quantum dot. By substituting
Eq. (29) into Eq. (33), we obtain that the electric quadrupole
transition rate
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We find that the electric quadrupole absorption rate contains
the dyadic product of Pcv and Dnmlrst and vice versa. While Pcv
depends on the bulk material properties, Dnmlrst depends on
the quantum dot properties [see Eqs. (20) and (31)]. This term
implies that the allowed electric quadrupole transitions occur
when the quantum numbers l,s,m, and t fulfill

m t l s− = ± − = ±1 1and

or
m t l s− = − = ±0 1and .

These relationships form the selection rules for the electric
quadrupole transitions in a semiconductor quantum dot. Fig-
ure 91.45 illustrates the first few allowed quadrupole transi-

eg

30 h2/(2me,ha2)

E
le

ct
ro

n
H

ol
e

0

E
ne

rg
y

G5620

10
0 11

-1

11
0

11
1 12

-2

12
-1

12
0

12
1

12
2

10
0

11
-1

11
0

11
1

12
-2

12
1

12
2

20
0

12
0

12
-1

20
0

Figure 91.45
Diagram of the allowed electric quadrupole transitions in a spherical quantum
dot. The energy levels are labeled by the quantum numbers nlm (electron)
and rst (hole). The selection rules are l−s = ±1 and (m−t = ±1 or m−t = 0)].
The allowed electric quadrupole transitions exclude the allowed electric
dipole transitions.
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tions. We find that the quadrupole selection rules exclude any
electric dipole allowed transitions. This allows the electric
quadrupole transitions to be spectroscopically separated from
electric dipole transitions.

Absorption Rates in Strongly Confined Optical Fields
To compare the electric dipole and electric quadrupole

absorption rates in strongly confined optical fields, we con-
sider a quantum dot in the vicinity of a laser-illuminated metal
tip. This situation is encountered in so-called “apertureless”
schemes of near-field optical microscopy. Strongest light con-
finement is achieved when the metal tip is irradiated with light
polarized along the tip axis. For this situation, Fig. 91.46(a)
shows the field distribution E 2( ) rigorously calculated by the
multiple multipole (MMP) method23 near a gold tip with
10-nm end diameter and irradiated with λ = 800-nm light.24 In
MMP, electromagnetic fields are represented by a series ex-
pansion of known analytical solutions of Maxwell equations.
To determine the unknown coefficients in the series expansion,
boundary conditions are imposed at discrete points on the
interfaces between adjacent homogeneous domains. The cal-
culated field distribution, for our particular geometry, can be
well approximated by the field generated by an electric dipole
aligned along the tip axis z and located at the origin of tip
curvature. Figure 91.46(b) demonstrates the validity of this
dipole approximation: the rigorously calculated field strength

E 2( ) for the metal tip is plotted along the z axis (solid line)
and compared with the corresponding field generated by the
dipole (dashed line).18 The only adjustable parameter is the
dipole moment p0, which can be related to the computa-
tionally determined field enhancement factor. Because of this
very good approximation, we simply replace the laser-illumi-
nated metal tip by a dipole.

The electric field E(r) generated by an oscillating electric
dipole with moment p0 located at r0 and oscillating at the
angular frequency ω can be represented as

˜ , .E r r,r p( ) = ( )k0
2

0
0 0ε
ωG (35)

Here, k c0 =ω  (c being the vacuum speed of light), and
G r r, ,0 ω( ) is the free-space dyadic Green’s function.25 We
consider the situation depicted in Fig. 91.47, where a sharp
metal tip illuminated with light polarized along the tip axis
(z axis) is substituted by a dipole with magnitude p0 and
oriented in the z direction. The dipole is located at r0 = z0nz, and
the quantum dot coordinates are r = xnx + yny. The quantum dot
is scanned in the plane z = 0, while the position of the exciting
dipole is kept fixed.
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Figure 91.46
(a) Computed field distribution (|E|2) near a gold tip irradiated by a plane
wave polarized along the tip axis. Logarithmic scaling with a factor of 2
between successive contour lines. (b) Comparison of the computed field (|E|2,
solid curve) with the corresponding field of a dipole (|E|2, dashed curve)
oriented along the tip axis and located inside the tip. Both fields are evaluated
along the tip axis z with z = 0 coinciding with the tip surface.
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Figure 91.47
Simplified configuration of a quantum dot r n n= +( )x yx y  interacting with
a laser-illuminated metal tip. The tip is replaced by a vertical dipole r n0 0=( )z z

with moment p0 and oriented along the z axis.
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To calculate the electric quadrupole absorption rate (αQ)
and the electric dipole absorption rate (αE), we consider Bloch
functions for the valence band and conduction band that are
similar to those of GaAs. If we ignore spin-orbit coupling and
spin degeneracy, the p-like valence band is three-fold degener-
ate. The Bloch functions are calculated by using the empirical
pseudopotential method with parameters taken from Ref. 26.
GaAs has a lattice constant of d = 0.565 nm, and the effective
masses of electron and hole are me = 0.067 m0 and mh =
0.080 m0 (light hole), respectively. Inclusion of the heavy hole
will only shift the hole energy levels, as long as the heavy-hole
Bohr radius is larger than the quantum dot radius.

We consider the lowest-allowed electric dipole transition,
i.e., the transition with the lowest-allowed energy difference
between initial and final states. During this transition, an
electron with quantum numbers (100) and a hole with quantum
numbers (100) are created. Since there is no preferential
coordinate axis, we take the rotational average of Eq. (18).
Also, by taking into account the degeneracy of the valence
band (three-fold), the averaged electric dipole absorption rate
becomes

α δ ω ε εE = − +( )[ ]Ke
e hh 10 10 , (36)

where

K ee = ( )2 2 2 2π
h

Ẽ 0 P (37)

and

P P P P= = =c c cv v v1 2 3
. (38)

By computing numerically the integral of Eq. (20) over a unit
cell of the crystal, we obtain that P ≈ 0 75. .d

The lowest-energy-allowed electric quadrupole transition
creates a hole with quantum numbers (110), (11-1), or (111)
(three-fold degeneracy) and an electron with quantum num-
bers (100). Again, there is no preferential coordinate axis, so
the rotational average of Eq. (34) has to be evaluated. Since the
electric quadrupole moment is the dyadic product of two
vectors with independent orientations, the rotational average
of Eq. (34) is obtained in a straightforward manner. After
evaluating the average and taking into account the degeneracy

of the valence band and the hole energy level, the averaged
electric quadrupole absorption rate becomes

α δ ω ε εQ Q= − +( )[ ]K e hh 10 11 . (39)

Here �KQ� corresponds to
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(40)

The ith Cartesian coordinate is denoted by xi and Ẽi r( )  is ith

Cartesian component of the electric field Ẽ ri ( ) . |D| corre-
sponds to

D D D D= = = −10010 100111 10011 1 . (41)

The integration of Eq. (41) over the quantum dot volume
renders a value |D| ≈ 0.3 a.

Discussion of the Near Field–Quantum Dot Interaction
We analyze absorption rates for quantum dots with the two

different radii: a = 5 nm and a = 10 nm. For a = 5 nm, the electric
quadrupole transition is excited at a wavelength of λ ≈ 500 nm
and the electric dipole transition at λ ≈ 550 nm. On the other
hand, the quadrupole transition for a quantum dot of radius a
= 10 nm occurs at λ ≈ 615 nm and the electric dipole transition
at λ ≈ 630 nm.

For a quantum dot that is just beneath the exciting dipole
(r = 0), Fig. 91.48 shows the ratio of the quadrupole absorption
rate and the dipole absorption rate (�αQ�/�αE�) as a function
of the normalized separation z0/λ. The vertical dashed line
indicates the minimum physical distance between quantum dot
and the dipole, i.e., the limit at which the tip and quantum dot
would touch (we assume a tip radius of 5 nm).

For the quantum dot with radius a = 5 nm and an excitation
wavelength of λ = 550 nm, the normalized minimum distance
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is z0 0 018min . .λ ≈  Similarly, for the quantum dot with radius
a = 10 nm and a wavelength of λ = 630 nm, the minimum
distance is 15 nm, which corresponds to a normalized distance
of z0 0 024min . .λ ≈  The important finding is that the ratio
(�αQ�/�αE�) can be as high as 0.3 for a 5-nm quantum dot [see
Fig. 91.48(a)] and even 0.6 for a 10-nm quantum dot [see
Fig. 91.48(b)]. These values are roughly three orders of mag-
nitude larger than those obtained by using far-field excitation
[for plane wave excitation the ratio is of the order of (a/λ)2].
Thus, we find that in the extreme near field (z0 < λ/10),
quadrupole transitions become important and the electric di-
pole approximation is not sufficiently accurate!

The plots in Figs. 91.49 and 91.50 are generated by scanning
the quantum dot in the x-y plane while keeping the exciting
dipole at the constant height z0. Figure 91.49 shows the electric
dipole absorption rate �αE�, whereas Fig. 91.50 shows the

electric quadrupole absorption rate �αQ�. Both plots are sym-
metrical with respect to the z axis. In the case of �αE�, this
symmetry is generated by the dominant field component Ẽz ,
whereas in the case of �αE�, the symmetry is due to the strong
field gradient ∂ ∂Ẽ zz . The electric dipole absorption rate is
proportional to the square of the particle dipole moment p0
and to the square of the lattice constant of the crystal d. On the
other hand, the quadrupole absorption rate is also propor-
tional to the square of (a/λ). This is evident in Fig. 91.50 where
the ratio a/λ in Fig. 91.50(b) is twice the ratio a/λ in
Fig. 91.50(a). A comparison between the widths of the curves
in Figs. 91.49 and 91.50 shows that no improvement of spatial
resolution can be achieved by selectively probing optical
quadrupole transitions!

Conclusions
As was mentioned above, laser-irradiated metal tips are

used in near-field optical microscopy as miniature light
sources.17 A strongly enhanced and localized optical field is
created at the tip apex if proper polarization conditions are
used. Using this technique, spectroscopic measurements with
spatial resolutions of only 10 to 20 nm have been demon-
strated.17 To date, this is the highest spatial resolution of any
optical spectroscopic measurement. This technique will be

Figure 91.48
Ratio of the electric quadrupole absorption rate �αQ� and the electric dipole
absorption rate �αE� as a function of the normalized distance (z0/λ0) between
excitation dipole (r0 = z0nz) and quantum dot center (r = 0). The quantum dot
radius is a = 5 nm in (a) and a = 10 nm in (b). The vertical dashed line indicates
the minimum physical separation between the center of the quantum dot and
the exciting dipole. This separation corresponds to at + a, where at = 5 nm is
the radius of curvature of the metal tip.
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Figure 91.49
Electric dipole absorption rate �αE� as a function of the normalized lateral
coordinates (x/λ, y/λ). The height of the excitation dipole is z0 = 0.025 λ. The
vertical axis has units of 2 102
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10 10π λ δ ω ε ε( ) ∈( ) ( )[ ] − +( )[ ]edp h h .

The symbols e, d, and p0 denote the elementary charge, the lattice constant,
and the dipole moment, respectively.
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applied in our future investigations to experimentally verify
the quadrupole transitions predicted in this work. Single CdSe
quantum dots will be dispersed on a flat substrate, and the
quantum dot luminescence will be recorded as a function of
excitation wavelength and tip position.

In this work, higher-order multipole interactions between a
semiconductor quantum dot and a strongly confined optical
field have have analyzed. Expressions have been derived for
the electric quadrupole interaction Hamiltonian, the associated
absorption rate, and selection rules. It has been assumed that
the quantum dot has a p-like valence band and an s-like
conduction band. Also, the Bohr radii of electron and hole were
assumed to be larger than the sphere radius (strong confine-
ment limit), and no Coulomb interactions between hole and
electron have been taken into account. Because of their differ-
ent selection rules, electric dipole and electric quadrupole
interband transitions can be separated and selectively excited.
The electric quadrupole absorption strength depends on the
bulk properties of the material (Bloch functions) as well as on
the envelope functions (confinement functions). This differs
from the electric dipole absorption strength, which depends
only on the bulk properties of the semiconductor. When the
quantum dot with radius a interacts with the confined optical

field produced by a sharply pointed tip, the ratio between the
electric quadrupole absorption rate and the electric dipole
absorption rate can be as high as 0.3 for a = 5 nm and even
0.6 for a = 10 nm. Electric quadrupole transitions cannot be
ignored in the extreme near field, i.e., for separations between
tip and quantum dot smaller than λ/10. The inclusion of electric
quadrupole transitions modifies the absorption spectra of
quantum dots in the extreme near field. We have shown,
however, that no improvement in the spatial resolution can be
achieved by selective probing of electric quadrupole transi-
tions. Future studies will be directed at electric quadrupole
excitonic interactions.
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