Scaling Law for Marginal Ignition

Introduction

In recent years, a considerable effortl has been made to
determinethe minimum energy required for ignitionininertial
confinement fusion (ICF) implosions. Though different con-
clusions have been reached by different authors, consensusis
that the minimum energy required for ignition is a strong
function of the shell implosion velocity as well as the shell
adiabat. Various approachesto the study of ignition haveledto
scaling laws in which the shell kinetic energy required for
ignition is given as afunction of the implosion velocity, shell
adiabat (in-flight and at stagnation), and other parameterssuch
as the applied pressure at the end of the acceleration phase.
Scientists from Lawrence Livermore National Laboratory
(LLNL) have produced a scaling lawl-° for marginal ignition
by fitting a large database of LASNEX simulations of implo-
sionswith gain approximately equal to unity. Thefirst scaling
law by Levedahl and Lindl (LL)! was obtained by fitting the
shell kinetic energy withthein-flight shell adiabat and the shell
implosion velocity. The LL scaling law yields

Bii’
E, ~ =%, 1
where E,. isthe shell kinetic energy at the end of the accelera-
tionphase, B¢ isthein-flight shell adiabat, and V;,, isthe shell
implosion velocity. In the derivation of Eq. (1), the different
hydrodynamic quantities have been rescaled by keeping the
initial pressure constant. A similar result was al so obtained by
Piriz.2 Later, Basko and Johner (BJ) derived asimilar scaling
law? from a set of numerical simulations based on a self-
similar rescaling of the hydrodynamic quantities. Their con-
clusionisthat the minimum energy required for ignition scales
as
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At first glance, the BJ scaling appears quite different from the
LL scaling; however, it must be emphasized that the hydrody-
namic similarity used by Basko and Johner requires that the
pressure scales as P~Vi?npﬁi}1'5 in contrast with the P ~
constant assumption used in the derivation of the LL scaling.
Relations (1) and (2) seem at odds with the standard static
assembled scaling based on the isobaric model of Meyer-ter-
Vehn,’
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where S isthe stagnation adiabat and J5 = pRsTs with pg, R,
and T4 representing the hot-spot density, radius, and tempera-
ture at stagnation.

Itisimportant to emphasi zethat the shell adiabat usedin Eq.
(3) iscalculated at stagnation and itsvalue differsfromthein-
flight adiabat used in Egs. (1) and (2). This point was not made
by Basko and Johner, who did not distinguish between thein-
flight and stagnation adiabats. It follows that a comparison
between Eq. (3) and Egs. (1) and (2) cannot be made unless a
relation between the in-flight and stagnation adiabats is de-
rived. ThusEqg. (3) and Egs. (1) and (2) represent two different
scalings that we denote as the “stagnation” scaling and “in-
flight” scaling, respectively.

Another important point concerning the ignition condition
isthefollowing: If ignitionistriggered at afixed value of Jq(as
commonly assumed), Eq. (3) yields a stagnation scaling

3
By ~ 1% : (4)
Vimp

Thisresult disagreeswiththe stagnation scaling recently found
by Herrmann, Tabak, and Lindl (HTL)® based on a numerical
fit of LASNEX runsleading to
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Basko and Johner pointed out that the condition J, = constant
does not correctly represent the ignition conditions because it
neglects the tamping effect of the shell. This is important
becausethe shell’sinertiadeterminesthe hot-spot disassembly
time. Basko and Johner estimated analytically that, at ignition,
Js depends linearly on the implosion velocity Js ~ Vi, thus
leading to the modified ignition scaling [from Eq. (3)]

e
E, ~ . (6)
Vimp

Basko and Johner revised thisscaling® through aset of numeri-
cal simulations starting from the assembled state and derived
what they define as the “ dynamic assembled state scaling”

(")

With the exception of minor differences in the exponents, all
the stagnation scalings [Egs. (5)—(7)] seem to agree and cor-
roborate the argument that Jg is proportional to the implosion
velocity or to some power (<1) of it.

Herrmann et al.> revised the in-flight scaling of Levedahl
and Lindl through a series of LASNEX simulations, allowing
for changesin the shell pressure at the end of the acceleration
phase, and concluded that the energy scalingintermsof thein-
flight variables can be approximated by the following fit:

B~ ﬁ )
VEgey”

where P, isthe applied pressure at the end of the acceleration
phase (i.e., at the peak of the shell kinetic energy). It is
important to notice that the in-flight HTL scaling [Eq. (8)]
reproduces the in-flight BJ scaling [EqQ. (2)] when the self-
similar hydrodynamic scaling for the pressure P ~ Vi%p//}ff/z
is substituted into Eq. (8). Recently, Kemp, Meyer-ter-Vehn,
and Atzeni (KMA)® analytically reproduced ascaling law that
resemblesthe in-flight HTL scaling [Eg. (8)]:
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Equation (9) was derived from a self-similar solution of an
imploding shell where Py and V, are the peak pressure and
velocity at the time of void closure. Even though it is unclear
how to relate Pg in Eq. (9) to P, inthe HTL scaling [Eq. (8)],
thetwo scaling lawsarestrikingly similar if Jgisconstant at the
onset of ignition. However, if Jg scales linearly with the
implosion velocity as suggested by Basko,3 the KMA scaling
will produce aweak dependence ontheimplosion velocity and
significantly deviatefrom the HTL scaling. Another important
conclusion of the KMA self-similar solutionisthat the stagna-
tion adiabat is related to its in-flight value through the shell
Mach number:

Bs~ Bt Ma ~ Bt Vo Ry 2, (10)

where M, isthe shell Mach number. A similar scaling between
the adiabats was also derived in Ref. 5 through a fit of the
LASNEX simulation database, yielding

Bs~ Bt Vimp P 2. (1)

Observe that the HTL scaling [EQg. (8)] can also be approxi-
mately derived from the stagnation scaling [Egs. (5)—(7)] by
using Eq. (11) to relate the stagnation and in-flight adiabats.

Though many discrepancieshavebeenresolved withregard
to the different scalings, it is important to note that some
differences persist. In particular, the analytic KMA scaling
[EQq. (9)] reproducesthein-flight HTL scaling [Eq. (8)] only if
Jsisindependent of theimplosion velocity. On the other hand,
thestagnationscalingin Eq. (3) reproducesthestagnation HTL
scaling [Eq. (5)] only if Jg ~ Vi, as proposed by Basko and
Johner. Thisleadsto the paradox that the two analytic theories
leading to Egs. (3) and (6) and Eq. (9) match the numerical fits
only when different ignition conditions are used (J5 = constant
or Js~ Vimp)-

In this article, a new model is developed to determine the
marginal ignition conditions and the minimum kinetic energy
required for ignition. This model includes the propagation of
the return shock through the shell and the change of the shell
adiabat as well as the most-relevant ignition physics such as
alpha-particle heating and heat-conduction losses. It repro-
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duces BJ scaling and HTL scaling with respect to the stagna-
tion adiabat, indicating that Jq is indeed proportional to the
implosion velocity. Furthermore, the model yields a relation
between the stagnation and in-flight adiabatsthat isin general
agreement with the KMA scaling and the HTL scaling
[Egs. (10) and (11)].

The following sections of this article (1) describe hot-spot
dynamics and shell dynamics; (2) derive the ignition scalings
with respect to the stagnation adiabat; (3) relate the stagnation
adiabat to the in-flight adiabat and derive the “in-flight”
scaling; and (4) verify a posteriori al the assumptions con-
cerning the hot-spot hydrodynamics.

Hot-Spot Dynamics

The hot spot is a low-density plasma heated by the shock
and by the PdV work of the cold, dense surrounding shell. Itis
made of ionized DT gas and the plasma ablated off the inner
shell surface. Itsdynamics are determined by the compression
of theshell, theenergy conduction and radiation|osses, andthe
alpha heating.

As the hot spot is formed after the shock reflection, its
temperature is typically large enough that its sound speed is
larger thantheflow velocity. Therefore, itisagood approxima-
tion to neglect the hot-spot kinetic energy with respect to its
internal energy throughout the assembly and ignition stages of
the hot spot. Another consequence of the subsonic flow as-
sumption is that the pressure is equilibrated and the pressure
profileisflat within the hot spot, i.e., Phg = Pp4(t).

Bremsstrahlung radiation energy losses can also be ne-
glected because their contribution is typically smaller than
that of the mechanical work and/or the fusion power. The
magnitude of the radiation losses is larger than the fusion
power for temperaturesbel ow 4.4 keV, whenthe PdV work rate
istypically greater than both radiation and fusion power. Thus,
at such low temperatures, both radiation losses and apha
heating power are negligible with respect to the compression
work rate. The PdV work rate decreasesasthe shell approaches
the stagnation point, while higher temperatures are reached
within the hot spot. If these temperatures are well above
4.4 keV, the alpha power is greater than the radiation losses
and the bremsstrahlung term can again be neglected in the
energy equation.

Another simplification is the assumption that the alpha

particles are locally deposited. This approximation requires a
condition on the hot-spot temperature and areal density that
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can be satisfied for sufficiently large implosion velocities.
Indeed, it will be shown a posteriori [Eq. (10)] that both
bremsstrahlung radiation and al pha-particle diffusion can be
neglected as long as the implosion velocity is larger than a
critical vaue.

Based on previous assumptions, the energy conservation
equationfor thehot spot includesthe PdV work of theshell, the
conduction energy |osses, the apha-particle heating, and the
change in internal energy:

3

d p
>3 P+D%vpa_mm( YO 2 5 Eq(0v), (12)

where p is the hot-spot density, M; is the ion mass, E, =
3.5 MeV isthe alpha-particle energy, k(T) ~ koT22is Spitzer
thermal conductivity, and P = P4(t) for subsonic flows.

Following Ref. 8, we integrate Eq. (12) over the hot-spot
volume enclosed by the inner shell surface and approximate
the fusion cross section with the quadratic form (ov) =~ S, T2
with S, = 10718 cm3s™1 keV~2. Figure 87.46 shows that the
error produced by the T2 approximation of (ov) is less than
30%for 6 < T < 25keV. At theinner surface, the shell material
iscold and thethermal conduction can be neglected. Thisleads
to the following form of the integrated energy equation:

dRys O

< (o) + 3RER U (R ) - Tl 2

=3 o AeR. (13)

WhereU(RhS,t) istheflow velocity at theshell inner surfaceand
= E, S, /24. Theflow velocity results from the combina-
tlon of the inner surface motion and the ablative flow,
U(Rus:t) = Rus —Va, WhereVistheablation velocity and Rug
scaleswith theimplosion velocity. Since V, << R,g, the abla-
tion vel ocity® can be neglected and Eq. (13) can berewrittenin
the simplified form

o +5Re S = 5, B2, (14
Res
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Figure 87.46

Plot of the normalized fusion cross section (0v)/0.97 x 10718 T (keV)2
between 6 and 30 keV. The maximum error is 27%. (The reference cross
section is taken from Ref. 9.)

Notethat the heat conductionlossesdo not enter into theglobal
energy balance of the hot spot becausethe heat flux leaving the
hot spot is deposited onto the inner shell surface. A fraction of
this energy is transformed into internal energy of the shell
material ablating into the hot spot. The remaining fraction
producesthe PdV work doneby theablated plasmaenteringthe
hot spot against the hot-spot pressure. In other words, the
energy leaving the hot spot in the form of heat conduction
losses goes back into the hot spot in theform of internal energy
and compression work of the ablated plasma. Therefore, con-
ductionlossesdo not affect the global energy balanceof the hot
spot and therefore do not represent net energy |ossesto the hot
spot, asshown by Eq. (14). Itisimportant to emphasi zethat the
hot-spot energy is proportional toitspressure. The conduction
losses do affect the hot-spot temperature but not its pressure.
This conclusion implies that greater conduction losses would
lower the temperature and raise the density (through larger
ablation at the shell inner surface), leaving the pressure (P ~
PT) unaltered.

The next step is to couple the hot-spot-energy equation
[Eq. (14)] with the shell dynamics through the shell momen-
tum conservation and to determine the hot-spot radius as a
function of the hot-spot pressure.

Shell Dynamics

Intheinitial stage of the deceleration phase, the hot spot is
heated and compressed by the piston action of the shell. If a
sufficiently large pressure is reached within the hot spot, a
thermal instability is driven by the absorbed fusion power,
leading to arapidincrease of the hot-spot energy. Thisinstabil-
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ity isreferred to as “thermonuclear ignition.” In this section,
we develop a simple model describing the shell motion and
combinethe shell and hot-spot equationsin order to construct
a self-consistent model of the deceleration phase and hot-
spot ignition.

As mentioned in Ref. 8, the decel eration phase starts after
theshock reflected from the center of the capsul einteractswith
theincoming shell. For simplicity, weassumethat after thefirst
shock reflects off the shell, all subsequent shocksareweak and
do not produce large pressure jumps within the hot spot or the
shell. For thisreason, we refer to our model asthe “one-shock
model.” If multiple shocks are launched during the accelera-
tion phase and do not merge into one before reaching the shell
center but instead convergeto the center at different times, the
one-shock model may not be valid. After interacting with the
shell, the return shock travels within the shell material and
eventually reaches the shell’s outer surface.

Two shell configurations have been considered: the thin
incompressibleshell and thethick compressibleshell. Thethin
shell model assumes that the shock reaches the outer shell
surface immediately and that the whole shell actslike arigid
pistononthehot spot. Thismodel issimpleand providesuseful
physical insight into theignition problem. However, it leadsto
a significant underestimation of the ignition energy require-
mentsfor two reasons: First, thismodel assumesthat theentire
shell kinetic energy is transformed into hot-spot internal en-
ergy at stagnation. Second, it doesnot includethe shell decom-
pression after the return shock has passed through the shell.
ICF capsules are usually better described by the thick com-
pressible shell model wherethe shock propagating through the
shell dividesitintotwo regionsthat provide compressionwork
at different rates. At stagnation, the shock is still within the
shell, and only the shocked part has released all its kinetic
energy to the hot spot.

In Sec. 1, wedeterminethe shell dynamicsusingthesimple
thinincompressible shell model. In Sec. 2, we derivethethick
compressible shell model and determine all the relevant cap-
sule properties, once the conditions at the beginning of the
deceleration phase are known.

1. The Thin Incompressible Shell Model

To gain some physical insight into the shell dynamics, we
consider the simple model of an incompressible shell of finite
mass but infinitesimally small thickness.
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The motion of the thinincompressible shell isgoverned by
Newton’s law balancing the shell inertia with the hot-spot
pressure force:

Mg, I.éhs = 47—R§SF1151 (15)

where Mg, isthe shell mass. Here Mg, is constant and, accord-
ing to the thin-shell approximation, the shell’s center of mass
coincides with the hot-spot radius. Note that the pressure
appliedtotheshell’souter surface hasbeen neglected sincethe
laser isturned off during the decel eration phase. Equation (15)
iscombined with the hot-spot energy balance[Eq. (14)], which
we rewrite in the following compact form:

%[H’]SRES =2a Hﬁzst?s (16)

Equations (15) and (16) constitute a closed system of coupled
differential equationsthat can beeasily solvedto determinethe
hot-spot pressure and shell position.

2. The Thick Compressible Shell Model

The thin incompressible shell model provides a useful
qualitative understanding of the deceleration phase and hot-
spot ignition. If the shell isincompressible, however, its mass
supplies auniform PdV work rate to the hot spot, and the thin
shell model |eads to optimistic predictions about the onset of
ignition. For a more accurate quantitative estimate of the
ignition conditions, it is appropriate to use a compressible
model, including the return shock propagation through the
shell. After the interaction with the shell’s inner surface, the
return shock travels within the shell material and eventually
reachesthe shell’s outer surface. We let R(t) denote the shock
position within the shell. The shell material with r < R, is
shocked and compressed, whilethe material withr > Rgisina
“free-fall” condition. A free-fall condition is the state of the
shell in the absence of a hot spot. Since the shock wave
reflected from the center carriestheinformation regarding the
high pressurewithinthehot spot, it isreasonabl eto assumethat
the unshocked material isnot aware of the presence of the hot
spot and moves at constant velocity toward the center.

Theshocked part of the shell behavesasathin shell and acts
like apiston on the hot spot. The unshocked part isin the free-
fall (ff) condition and providescompression work ratethrough
the flow of momentum acrossthe shock. Thisflow of momen-
tum, however, is proportional to [ o] R, d for a given
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implosion velocity can be small if the unshocked shell density
Pss issmall. In simple words, athick compressible shell does
not act as a uniform piston. The material near the hot-spot
surface provides PdV work at afaster rate than the material on
the opposite side of the shock. The PdV work would begrossly
overestimated if we were to assume that the entire shell mass
is uniformily compressing the hot spot, as in the thin incom-
pressible shell model.

a. _Freefall conditions. Free-fall conditions describe the
dynamics of the unshocked part of the shell. Hereadistinction
is made between the coasting phase and free-fall conditions.
The coasting phase represents the time interval after the laser
isturned off and beforethereturn shock hasinteracted with the
shell. The free-fall conditions apply to the unshocked part of
theshell after the shock—shell interaction. Inthe absence of the
return shock, the shell travels inward at approximately con-
stant velocity while its thickness increases due to the expan-
sion of the shell material into its surroundings. We consider
the following simple form for the density profile of a free-
falling shell:

2
37|;qu [r = Rin(®)] [Rout(t)_r], (17)

pre (r1) e
where Mg, isthe shell mass, Ag = Ry () —Rip(t) isthefree-fall
shell thickness, and R, Ri,, arethetrajectoriesof theouter and
inner free-falling surfaces. The density profile described by
Eq. (17) accurately reproduces the results of numerical simu-
lations obtained using the code LILAC.

During the coasting and decel eration phase, the absence of
an applied pressure causes the shell surfaces to expand at the
speed of sound, suggesting that the shell thicknessincreases at
the rate

2= H{Cam). (18)

where(Cggr)) isthe average unshocked-shell sound speed and
U is aproportionality constant. Typically the free-fall sound
speedismuch smaller than the shock velacity through the shell
so there is no significant thickening of the shell during the
deceleration phase as compared to the coasting phase. Further-
more, the shell sound speed during the free-fall phaseis much
lower than the implosion velocity. Therefore, changes in the
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shell’s internal energy do not significantly affect the free-
falling shell’skinetic energy. It followsthat the changein shell
thickness, while significant during the coasting phase, can be
neglected during the deceleration phase, and Ay = Ag =
constant from the shock—shell interaction time to the stagna-
tiontime. Theinner and outer free-fall surfacetrajectoriescan
therefore be approximated with linear functions of time:

I:zin:RO_Vimpt- Rout=Fo +8¢ _Vimpta (19)

where Ry is the position of the inner shell surface at the
beginning of the deceleration phase.

Since the free-fall profiles describe the conditions of the
unshocked shell material, it is reasonable to assume that the
free-fall conditionsareisentropic. If, for simplicity, weusean
ideal gas equation of state for the shell, the shell pressure
evolves according to the simple adiabatic equation

R (r.t) = Bre oy (. 1) 72, (20)

where Py and S are the free-fall pressure and adiabat,
respectively. Here, for simplicity, we assume that the free-fall
adiabat is uniform and equal to its value (in flight) at the
beginning of the deceleration phase B = Bt

b. Shocked-shell equations of motion. The shock front
dividestheshell intotwo parts, which havedifferent dynamics.
The shocked shell material enclosesthe hot spot and produces
the true piston action of the shell. The shocked material is
usually much denser than the unshocked material. Thelatter is
described by the free-fall conditions mentioned earlier and
contributesto the hot-spot compression work through the flow
of momentum across the shock front. The contribution of the
free-fall shell to the hot-spot compression is dominant during
theinitial stage of the decel eration phase, when the mass of the
shocked shell issmall. At later times, however, it isthe shocked
shell that provides most of the compression work.

AsshowninRef. 8, ablation off theshell’ sinner surfaceinto
the hot spot determines the hot-spot mass. Thisistypically a
small fraction of the shell mass until a burn wave begins to
propagate through the shell and the hot spot is filled with
ablated material. Thisraisesits density to alevel comparable
withthe shell density. Thus, massablation off the shell into the
hot spot significantly affects the shell dynamicsonly after the
onset of the ignition process and during burn-wave propaga-
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tion in the shell, stages that are not considered in this article.
Here, we neglect the effect of mass ablation on the shell’s
dynamicsand approximatethefluidvelocity at theshell’sinner
surface (equal to the hot-spot radius) with the surface vel ocity:

Uss(Rhs't) = I';\>hs —V,a= I';\)th (21)

where the subscript “ss” stands for shocked shell and “hs’ for
hot spot. Since the shocked material isdense, it isappropriate
to approximate the shocked part of the shell asathin shell. In
the thin-shell approximation, the shocked shell’s thicknessis
assumed to be much smaller than itsradius. Here, the shocked
shell extendsfrom the hot-spot radius R,gto the shock front Ry,
and the fluid vel ocity within the shocked shell can be approxi-
mated by its Taylor expansion:

Ugs(r 1)~ Rs + g;,—‘ji (F - Res)- (22)

Since the flow is isentropic within the shocked shell, it is
straightforward to determine the spatial derivatives from the
entropy conservation equation

[at(P3/5r2)+ar(P3/5r2U) = 0],
leading to

gs—gé% = ‘m%{ Rs(t)*° Rqs(t)z} . ()

Using the hot-spot-energy equation[EqQ. (14)] to eliminate I'%S
inEg. (23) and substituting (23) into (22) leadsto thefol lowing
simple form of the post-shock velocity:

Us(Ret) = R g 2 Sa (R -R)- - (24

Because of the mass flow through the shock front, the mass of
the shocked part M increases with time. The variation of the
shocked shell’s mass is determined by the mass flow through
the shock front:

Mss:47TRl§ Qf(R@t)[R("'Vimp]a (25)
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where p(R.t) is the unshocked density given by Eq. (17)
calculated at the shock front. Here, the subscript “ff” (freefall)
refers to the unshocked material.

The momentum bal ance of the shocked shell is obtained by
integrating the momentum conservation eguation from the
hot-spot radius to the shock front, yielding

%[MSS<USS>] * MSSVimp = 47T RE Phs. (26)

where <U$>:0.5[U$(Rhs,t) + U§(R<,t)] isan averageveloc-
ity of theshocked shell. Inthederivation of Eq. (26), theshell’s
free-fall pressure has been neglected with respect to the hot-
spot pressure, and the velocity is assumed uniform and equal
to the implosion velocity throughout the free-fall part of the
shell. The average shocked-shell velocity can be rewritten
using Egs. (21) and (24), yielding

Ris+R_3

2R

<U$> RhS ZO’ PhS

Thenext step isto determine the shock position Ri(t) using the
Rankine—Hugoniot rel ationsat the shock front. We assumethat
the return shock is strong and write the shock velocity as

4P5(Re.t) 29

.:_Wm :
R P 301t (R t)

The quantity Ps(R.t) represents the pressure in the shocked
shell calculated at the shock front. This pressure can be
determined using another Hugoniot relation relating the ve-
locities before (=Vijmp) and after [Ug(Rt)] the shock:

3Ps(Re.t) |

29
40t (Ret) 9

Uss(Rert)==Vimp +

Thus, thepost-shock pressureP(R,,t) canbedeterminedfrom
Eq. (29) and substituted into Eq. (28), leading to the following
equation for the shock position:

|mp

Re=— L 2y (Ret), (30)
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where the post-shock velocity U(Ry.t) is given in Eq. (24).
The last equation needed to close the system comes from the
hot-spot energy balance[ Eq. (14)] (derived earlier) relatingthe
hot-spot pressure Ppg(t) to the hot-spot radius Ry(t). Equa-
tions(14), (17), (24)—27), and (30) represent acompl ete set of
equationsthat describethe evolution of all therelevant hydro-
dynamic quantitiesduring the decel eration phase and the onset
of ignition. For convenience, the complete model is summa-
rized in the following subsection.

. Summary of the thick shell model. We summarize bel ow
all therelevant equationsof thethick shell model, consisting of
a set of four ordinary differential equations governing the
evolution of the following hydrodynamic quantities:

1. The hot-spot pressure Py4(t), which obeys the following
ordinary differential equation (ODE):

Rs _5 B2, (31)

Shhs
F%’meRhS

2. The hot-spot radius Rng(t) equal to the shocked-shell
inner-surface radius governed by Newton’s law:

Mss%<u +Mss[ +V|mp] 4"315Rhs: (32)

where (Ugy) is the average shocked-shell velocity,

Rs*Rc_3
“or. 1020 As(RRe) (39

<Uss> = Rﬁs
and Ry is the shock position.

3. The shocked-shell mass M(t), which obeys mass
conservation:

s =47RE it (Rot)| Re + Vi (34)

4. The shock position within the shell R.(t) derived from
Hugoniot relations:

. _Vim
R = 3p+ “Ug(Rert), (35)
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where Ug(R,t) is the post-shock velocity,

Us(Ret) = R g = Sa (R -R)- (39

The unshocked shell material is described by the free-fall
conditions:

2
o (10) = 37|:r/|§q [r- Rin(t)]A%Rout -1 &

where Mg, is the total shell mass, Ag = Ry (t)-Rin(t) is the
free-fall shell thickness (approximately constant), and R;(t)
= Ry~Vimpt is the inner-surface trgjectory starting from the
initial radius Ry at the beginning of the deceleration phase.

A set of initial conditions at the beginning of the decelera-
tion phase corresponding to the shell-shock interaction time
must be provided to solve the system of equations:

1. theinner-surface, free-fall (or implosion)
velocity =Vimp,

. theinner shell radius R,

. the shell thickness A,

. the shell mass Mq,, and

. the hot-spot pressure Py

a b~ wpnN

The solution of the four differential equations yields the time
evolution of the shock position, hot-spot radius, and pressure.
Thelast two quantities can be used to determine the evolution
of al other relevant hydrodynamic quantities inside the hot
spot, such as temperature, density, ablation velocity, density-
gradient scalelength, and areal density asdescribed in Ref. 8.

Ignition Scaling Using the Thin Incompressible
Shell Model

In this section, we first determine the ignition criterion in
termsof theinitial conditionsat the beginning of the decelera-
tion phasefor thethinincompressibleshell model. Theignition
criterion hasavery simple form and simple physical interpre-
tation. Next, we derive a scaling law in terms of the shell’s
kinetic energy and an entropy function. The latter does not
represent the shell adiabat since the shell is assumed incom-
pressible. It will be shown in the section entitled Ignition
Scaling Using the Compressible Shell M odel, however, that
this entropy function is directly proportional to the shell
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adiabat at stagnation when the finite compressibility of the
shell isincluded.

1. Ignition Criterion

The thin shell model can be simplified by eliminating Ppg
between Egs. (15) and (16) and by using the following dimen-
sionless variables:

Ris = Ris/Ro. T =Vimpt/Ro. (38)

A straightforward manipulation of Egs. (15) and (16) leads
to the following single ordinary differential equation for the
hot-spot radius:

Mg, Vi2
shVimp (40)

En = s
" anp R

2
T-OZDE,—MSh g/ 0=_1_
| IRRO T Y 3R

(41)

Here £ represents the ratio between the initial shell kinetic
energy and theinitial hot-spot internal energy, which is much
greater than unity in typical |CFimplosions. (Small values of
£p requirethat the hot-spot radius at the beginning of the free-
fall phase be very closeto the stagnation hot-spot radius. This
does not occur in typical ICF implosions.) The times rio and
Tg represent theinertial timeof the shell and thealpha-particle
heating time at the beginning of the deceleration phase. The
shell tragjectory is determined by solving Eq. (39) with the
following initial conditions:

Ris(0) =1, IE\)hs(o) =-1, FA\)hs(O) =1/#, (42)
where the “dot” indicates a derivative with respect to 1.
It isimportant to notice that aslong asthe alpha heating is

smaller than the compression work, the right-hand side of
Eq. (39) can be neglected and the shell trajectory is given by
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R= \/1—2r +r2(1465), (43)

leading to the following values of the stagnation time, radius,
acceleration, and pressure:

&g Ro
tyg = — 20 =0 (449)
S Vimp1+50 * 1+¢&g
~ \3/2 ~ \52
Osag = (L+&0)” Ro_ Paag = Po(1+80)7%.  (44b)

Equations(44) yield scaling relationsfor the stagnation values
of the hydrodynamic quantities in terms of the shell and hot-
spot propertiesat the beginning of thedecel eration phase. Such
relations are valid as long as the hot spot is not ignited. If the
alpha heating becomes important, the right-hand side of
Eqg. (39) must be retained and the stagnation pressure and
deceleration are significantly larger.

Itiseasy toshow that, for agiven &p, thesolution of Eq. (39)
develops an explosive instability when the parameter Y,
exceeds a critical value. Both parameters &y and Y, are
functions of the shell and hot-spot properties at the beginning
of the deceleration phase (Mg, Vimp, Ro, and Pg). A typical
singular explosive solution (dashed line in Fig. 87.47) shows
the shell gjected outward at aninfinite vel ocity. Such solutions
correspond to the thermal instability of the hot spot, which we
denoteas“ignition.” The singularity is dueto the fact that the
fusion reaction rate { ov) istaken to be proportional to T2, and,
therefore, it diverges to infinity with temperature. In reality,
(ov) is bounded at high temperatures and the shell gection
velocity isfinite. Nevertheless, the occurrence of the singular-
ity in the solution of Eq. (39) represents a simple and robust
definition of ignition for the thin shell model. We therefore
conclude that the hot spot is ignited when the solution of
Eq. (39) is singular. The numerical solution of Eq. (39) indi-
cates that singular solutions develop when the following ap-
proximate condition is satisfied:

0 3 72
v, 3+20710 L,
g

(45a)
(50 &
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which reduces to

Y, >+/3 (45b)
in the limit & >>1. Equations (45) represent the ignition
conditions in terms of the shell and hot-spot properties at the
beginning of the deceleration phase. The physical interpreta-
tion of theignitionthresholdisstraightforward. Werewritethe
hot-spot-energy equation [Eqg. (14)] in the following intuitive
form:

1 s oRs 46
S 2a Fhs Re’ (46)

where Eq = (477/3)R,sR3; is the hot-spot energy. After stag-
nation, the second term on the right-hand side is negative
( Rys >0 after stagnation) and represents the inverse hot-spot
decompressiontime (T gecomp = Rhs/ 2 Rhs) duetothe outward
motion of the shell pushed by the hot-spot pressure. This
decompression time can be estimated by setting

Tdecomp ~ 0-5\/ Rhs/ Iﬁhs

and using Eq. (15), leading to

1] Mg
T == |—_ 47
decomp 2 4”H1SR|1S ( )

’é\ T T T T l‘ T
5; 200 - : .
|
g 150 | ! .
=] |
ho I
® 100} ‘ i
.g_ .
&+ 50 -
o
T
| | | | | |
01 02 03 04 05 06 07
Time from beginning
of deceleration phase (ns)
TC5708
Figure 87.47

Thinincompressible shell model prediction for the evolution of the hot-spot
radius for NIF-like capsules [obtained by solving Eq. (39)]. The dashed line
represents an ignited solution with a singularity after stagnation. The solid
lines represent two non-ignited solutions.
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Note that the first term on the right-hand side of Eq. (46)
represents the inverse alpha-particle heating time

Ta =Y3q Rs-

Ignition occursright after stagnation if the al pha heating time
is shorter than the decompression time:

Tg (Sag) <T decomp (siag) (48)

If Eq. (48) is satisfied, a thermal instability (the ignition
process) is triggered because the hot-spot pressure starts to
increase and leads to a shorter alpha heating time 7, ~ /Py
The decompression time is proportional to 1/\/R,s and de-
creases|lessthan the alphaheating time. Thisleadsto afurther
increase in pressure and a thermal explosive instability. To
estimate the ignition threshold, we use the stagnation values
(without alpha particles) given in Egs. (44) to find 7, (stag):

1 2
To(stag) = —e5 = — 5 (49)
2a Po(1+£o) ' (1+50) /
Similarly, we find Tgecomp(stag):
2
T decomp (Siag) = 2 = I (50)

EBgstagB B 2(1*‘50)'

where Tio [defined in Eq. (41)] represents the decompression
time if the shell stagnates at time t=0 rdecomp(o):rio :
Substituting Egs. (49) and (50) into (48) yields the approxi-

mate ignition condition

Tdecomp(o) A 132 ~-1\3/2
———|(1+¢ =Y, [1l+¢ >2, 51
Ta(O) ( O) a( 0 ) ( )

where the identity 79 =7,(0) has been used and the term
(1+ 50)3/ 2 representstheamplification factor of theratio 7;/7,
due to the hot-spot compression by the shell. Observe that
condition (51) issimilar to the numerical fit givenin (45a) and
yields approximately the same ignition threshold (Y, > 2) in
the limit of £y >>1.
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2. Ignition Scaling

We consider the marginal ignition criterion given in
Eq. (45b) in the relevant ICF limit £y >>1 and rewrite Y,
[defined in Eq. (40)] in the following form:

_ s _ E¢
Y = —x (52)
(277)2 PO I:‘>05V| mp

where E, = Msh\/i,znp/Z istheshell’skinetic energy. Usingthe
thin-shell approximation, the shell mass can be written as

Mg, =411, (0) RS /Ao, (53)

where pg,(0) and Ag = Ry/AAg are the shell density and aspect
ratio at the beginning of the decel eration phase (here Ay isthe
shell thickness). Equation (53) canalso becast intermsof shell
kinetic energy by multiplying both sides by Vi%p and then
using it to derive theinitial hot-spot radius Ry:

~ . 54
o an (OVEn 59

Substituting Eq. (54) into Eq. (52) and rewriting the ignition
condition Y, = constant in terms of the kinetic energy yields

o3 g3
=D bo (55)
2a Vimp
where Y, ~+/3 for ignition and
P
Po=r—"—53 (56)
[P (0)/ 0]

has the dimensions of an adiabat. Note that the pressure Py is
the hot-spot pressure at time't = 0 and not the shell pressure.
Thus, at this stage, the parameter 3, cannot be related to the
shell adiabat as should be expected when approximating the
shell with an incompressible layer. The scaling (56), though
dimensionally similar to the HTL stagnation scaling [Eq. (5)],
isstill inconclusive and deserves further analysis as shown in
the next section, where the effects of finite shell compressibil-
ity are retained.
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Ignition Scaling Using the Compressible Shell M odel

Since the right-hand side of Eq. (55) represents the mini-
mum Kinetic energy required for ignition, it is appropriate to
determine Aq in order to minimize the ignition requirements.
Theoptimum Aq can be determined by making use of thethick
shell model described earlier [Egs. (31)—(37)] and the follow-
ing simple argument.

If the shell istoo thin, the return shock reaches the outer
shell surface before stagnation, causing the shell to rapidly
expand outward, decompressing the hot spot and stopping the
ignition process. If the shell is too thick, stagnation (and
thereforeignition) isreached when the shock is still withinthe
shell and the unshocked part of the shell is till freefalling. In
this scenario, ignition is triggered with a surplus of kinetic
energy in the free-fall part of the shell. Ignition using the
minimum kinetic energy occurs when the return shock is
exactly at the shell’s outer surface at the same time the shell
reaches the stagnation point. We conclude that the optimum
shell thickness is such that the shock reaches the outer shell
surface at stagnation.

Because the shock position is the new information needed
to optimize Ag and minimize the shell’s kinetic energy, the
ignition condition needsto be determined using the compress-
iblethick shell model. Thenext stepisto rewritethethick shell
model in dimensionless form using the following definitions:

Ris=Ris/Ro. Rc=R/Ro. R =Rw/Py.  (573)

T=Vimpt/Ro, M =Mg/Mg,, (57b)

where Ry and Py are the shell’s inner surface and hot-spot
pressure at the beginning of the deceleration phase. A simple
manipulation of Egs. (31)—(37) using the definitions in (57)
yields a closed set of four differential equations,

ST R R P P
dréwéﬂ“s 2R 10 & P“S(Rk Rhs)ﬂ%
- A 59
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ARRANa R R) @

xask +1EH(L- W), (60)

5 +5p P Yo po
P + 5P Re 22 R (61)

representing the evolution of the shocked shell’sinner radius

Ifzhs, shock position ﬁk shocked shell mass M, and hot-spot
pressure @s.Theamfunction H(l— M) inEg. (60) limitsthe
magnitude of the shocked shell mass to the total shell mass.
That is, when Mg = M, (i.e., M =1), the right-hand side of
Eqg. (60) vanishesand the shocked shell massremains constant
and equal to the total shell mass. Equations (58)—(61) can be
solved using the following set of initial conditions:

(62)

Theinitial condition I:A\’hS =0 needsaclarification. Beforethe
interaction with the return shock, the shell density vanisheson
theinner surface. Asaresult of the interaction with the shock,
the shell’sinner surfaceis stopped, so the condition Iﬁqs =0is
applicableright after the interaction with the shock. After this
brief stop, the inner shell surface is set in motion by the
imploding high-density shell material that isnot stopped by the
return shock.

Observethat Egs. (58)—(61) depend onthree dimensionless
parameters Y, &g, and A, which need to be determined to
satisfy the following two conditions: (1) the hot spot must be
ignited, and (2) the return shock must be on the outer surface
at stagnationto assurethat thekinetic energy isminimized. The
first condition requires that the solution of Egs. (58)—(61) be
singular and the shell be gjected outward at infinite velocity
after stagnation. The second requiresthat M=1 at stagnation,
implying that the entire shell has been shocked.
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We solve Egs. (58)—(61) with the software program
MATHEMATICA inthelimit of £ >>1, whichisthe correct
limit for ICF implosions since the shell’s kinetic energy is
much larger than the hot-spot internal energy at the beginning
of the deceleration phase. We find that the singular solutions
with M =1 at stagnation occur when

Ay=0.39\/&y, Y,=2.60. (63)

Other resultsfrom the solution of Egs. (58)—(61) are shownin
Figs. 87.48-87.50. Figures 87.48 and 87.49 plot the evolution
of the shocked shell mass and hot-spot pressure. Figure 87.50
showsthetrajectoriesof the hot-spot radiusand the shock front
near stagnation. Analysis of the solution to the thick shell
equations suggests that the stagnation scaling of the hot-spot
pressure, hot-spot radius, and shock position are given by the
following:

Rhs(stag)=1.02 Rye3 2, (643)
Rs(Sta0)=1.23 Ry /%o , (64b)
R (stag)=1.40 Ry / /&, . (64c)

Observe that the relations for the stagnation values of P, and
Ry,s are similar (except for a numerical factor) to the ones
obtained earlier [Egs. (44)] with the thin shell model and

€y >>1. The ignition condition for Y, in Eq. (63) is aso
similar to (but with a different numerical value) that derived
with the thin shell model and leads to the same scaling for the
minimum energy required for ignition:

_2mg B

, (65)
S5 Vimp

Ex

where 3y isdefined in Eq. (56). The new result hereisthat the
shell’s aspect ratio Ay at the beginning of the deceleration
phase is related to the other shell properties through the first
condition in Eq. (63). Furthermore, the position of the outer

N
N b
T T

Pressure (P/2,5/2)

1.015

0.0 | | 1
1.000 1.005 1.010

Time (1)

1.020

TC5703

Figure 87.49

Thick compressible shell model results. Evolution of the hot-spot pressure,
obtained from Egs. (58)—(61). The vertical dashed line represents the shock
breakout time (also stagnation time).
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Thick compressible shell model results. Plot of the shocked shell massversus
time. Time t = 0 corresponds with the beginning of the deceleration phase.
When M =1, the entire shell has been shocked.

Thick compressibleshell model results. Trajectoriesof the shock and the hot-
spot radius, obtained from Egs. (58)—(61). Thevertical dashed linerepresents
the shock breakout time (also stagnation time).
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shell surface coincides with the shock position R, and is de-
termined in Eq. (64c). This latest result is essential to deter-
minetheignition scaling in terms of the stagnation properties.

Setting the shell mass at the beginning of the deceleration
phase equal to the stagnation mass,

nt® oy (0)= 2[R (s20) - (520 (). (e

and substituting Egs. (64) into Eg. (66) leadsto the following
relation between the shell densities:

pi(0)=03ps(826) 5 (67)
0

Then, using the definition of B EAéVSPO/psh(O)‘E’/3 and
Egs. (64a) and (67), the following relation is easily derived:

Bo=7.52 s, (68)

where S5 = Rys(stag)/ ps (stag)5/ 3 representstheshell stagna-
tion adiabat. Observe that the hot-spot pressure is used in the
definition of the shell stagnation adiabat. While thisis not an
exact definition, it is sufficiently accurate because the stagna-
tion pressure is continuous at the hot spot/shell interface.

The next step is to finalize the scaling law Eq. (65) using
Egs. (63) and (68) and the standard definition of thenormalized
stagnation adiabat

P(Mbar)
2.18pg4, (g/cm3

s (69)

)5/3 '

A straightforward manipul ation of Eq. (65) |eadsto thefollow-
ing formulafor the minimum energy required for ignition:

30 3x10’ o

E, =27(kJ)ag . 70
k ( )a imp(Cm/S)E (70)

Equation (70) representsthe marginal ignition scalinginterms
of the stagnation adiabat. Observethat Eq. (70) isquitesimilar
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in both the scaling rel ation aswell asthe numerical coefficient
with the result of Ref. 5, which reads as

0 3x107 07

E, =2.1(kJ)a2%®
k ( )as imp(cm/s)g

The next step isto relate the stagnation to the in-flight adiabat
and determine the “in-flight” scaling for marginal ignition.

Ignition Scaling Using the In-Flight Adiabat

Comparisons of different ignition capsules are usually
based on the magnitude of the in-flight adiabat, which can be
easily controlled by tuning theinitial foot of thelaser pulse. In
this section, the stagnation adiabat is related to the in-flight
adiabat, and theignition scaling law isexpressedintermsof the
in-flight hydrodynamic properties of the shell.

StartingfromEq. (63) | Ag = 0.39\/5 andthedefinition of
£o [EQ. (40)], we express the hot-spot pressure at the begin-
ning of the deceleration phase Ppg(0) in terms of the shell
pressure at the same time Pg,(0):

Fhs(0)=0.25 Ry (0) Ma(0)° /A3, (72)

where M4 (0) = Vimp /C5(0) isthe shell’sMach number at the
beginning of the deceleration phase and C40) is the shell’s
sound speed. Substituting Eq. (71) into Eg. (68) yields the
following relation:

Bs=0.034 Bt MA(0)?/ A, (72)

where B = Py,(0)/ psn(0)*2 isthe shell’s in-flight adiabat.
It is important to emphasize that time zero represents the
beginning of the deceleration phase, which starts after the
coasting phase.

Thenext stepistorelatethe shell’sMach number and aspect
ratio at the beginning of the decel eration phase to their values
at the beginning of the coasting phase during whichthelaser is
off and the ablation pressure vanishes. During the coasting
phase, the shell travels at approximately constant velocity,
while rarefaction waves propagate inside the shell from both
the inner and outer surfaces since the shell pressure is much
larger than the surrounding pressure. The expansion velocity
induced by ararefaction wave is
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Vexp = 3Cs[1 - (p/pmax )1/3]

and depends on the location along the density profile. If we
characterize the shell asthe region enclosed by the two points
where the density isequal to 1/e times the maximum density,
then the expansion velocity of the inner and outer surfacesis
Vexp = 0.85 Cg. Using these definitions, the shell thickness Ay,
increaseswith timeduring the coasting phase, according to the
following equation:

Ay

& ~1.7CS, (73)

where CS isthe shell sound speed during the coasting phase.
Equation (73) can be further simplified by using thefollowing
dimensionless variables:

Bsh =B /Dy Rn =Ra/Re,

where Ry, isthe shell radiusand R, A arethe shell radiusand
thicknessat the beginning of the coasting phase. Assuming that
the shell adiabat is constant during the coasting phase and
using the thin-shell approximation [Msh=4npsh Rgqush],
Eq. (73) can be rewritten as

B g7A 1 (74)
dRy, M& RG3A%

whereA.and M§ aretheshell’saspect ratio and Mach number
at the beginning of the coasting phase. Equation (74) can be
easily integrated to determine the evolution of the shell thick-
ness during the coasting phase:

O 3 4
E—E%Ev . (7

ASh :AC§+6.8

=

Assuming that the shell radiusat the beginning of thedecelera-
tion phase is much smaller than the radius at the beginning of
the coasting phase [Rq,(0) << R, EQ. (75) yields the asymp-
totic value of the shell thickness at the beginning of the decel-
eration phase (i.e., timet = 0):
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0 e
B(0)=Dci+68 %H . (76)
A

A relation between the aspect ratio A, and Mach number Mg
can be determined by matching the shell expansion rate at the
beginning of the coasting phase with the one calculated at the
end of the acceleration phase as explained bel ow.

During the acceleration phase, the shell density can be
obtained from the momentum conservation equation

oP
= 77
Psn9 ar (77)

where P = Bifpg?. A simple manipulation of Eq. (77) yields
the density profile

0 R
Psh*pag ZAShE ,

(78)

where R, istheradius of the ablation surface, p, isthe density
at the ablation surface, and

3¢
49

Ag, (79)

isthe shell thicknessfrom the ablation surfaceto the 1/e point.
Theshell’ saspect ratio peaksat the beginning of themain pulse
when its value is proportiona to the sguare of the Mach
number. It then decaysduring themain pulseand thefollowing
coasting phase when the shell radius decreases and the thick-
ness increases. The thickness can be written in terms of the
shell radius by using Eq. (79) and assuming that the ablation
pressure P, increases like 1/R as indicated by the result of
several numerical simulations. Setting g = 47TR? Py / Mg, into
Eq. (79) yields the shell thickness as a function of the radius:

_5 BPMe 1 1

sh =6 (PaRsI'1)3/5 Rs|745 - R;<5' (80)
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In deriving Eq. (80), the reduction of the shell mass dueto the
laser ablation has been neglected. Thisapproximation may not
beappropriatefor indirect-drive capsuleswherealargeportion
of the shell material is ablated off during the implosion. The
rate of the shell expansion during the acceleration phase
follows from Eq. (80):

Ry, (81)

When the expansion velocity [Eq. (81)] reaches the sound
speed, theshell pressure exceedstheapplied abl ation pressure.
Typically, the laser is turned off at this point since the shell
pressureis so large that the applied ablation pressure haslittle
effect onthe shell dynamics. From amathematical standpoint,
the accel eration phase turns into the coasting phase when the
shell’sexpansionvel ocity cal culated during accel eration phase
[Eq. (81)] matches the expansion velocity calculated during
the coasting phase [Eqg. (73)]. The matching occurs when

Tho_17G (82)
5 R ~Ran

which leadsto the following expression for the aspect ratio at
the beginning of the coasting phase:

A, =0.82M5. (83)

The next step is to rewrite the shell’'s Mach number at the
beginning of the deceleration phase in terms of the hydrody-
namic quantities at the beginning of the coasting phase. Using
the thin-shell approximation, one finds

By (13
Dl ol e

whereRy=Rg,(0) and Ag= A4, (0). Substituting Egs. (83), (84),
and (76) into (72) leads to the following expression of the
stagnation adabiat:

MA(0) =

B = 0745 (mg)". (@)
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which can be expressed in the convenient form

67 13
_ 0 o 08 DMmp(cm/s) 0 100 O
as=28aj P ?(Mbar)% (86)

Thisrelationissimilar to the numerical fit of Herrmann et al.®
and to the self-similar scaling found by Kemp et al.:6

p(cmys) 44

i
3x10" A

0 100 |j).Zl

Smoayd 7

Vim
gt =324075 gImP
g3

(cm/s)[? 0 100 g) |

0 2 Bmoand

BVim
a4 =230 100

Thefinal ignition energy scaling can be found by substituting
Eqg. (86) into Eq. (70), yielding

.39

0 70
24 3x10 g 100 ’ (89)

" Bhmplemsg BP(Mbar)E

Ey =59(kJ)a?

which is similar to Herrmann’s numerical fit

03x10” 000 100 7
Fmbang

EFTL = 50.8(k])a’t®
(K)ars é/imp(cm/s)g

Observe that both Eq. (88) and (89) show a scaling relation
resembling the one derived by Kemp et al. aslong asthetriple
product pnsThsRnsisaconstant for marginal ignition. However,
as shown in the following section, the model described in this
articleyieldsatriple product that is proportional to theimplo-
sion velocity. Thisisin agreement with Basko's analysis.

Assumptions About Hot-Spot Hydrodynamics

It isimportant to remember that Eq. (89) has been derived
under three assumptions. The first relates the alpha-particle
mean free path, which is assumed to be smaller than the hot-
spot radius, implying that the al pha-particle energy is depos-
ited locally. The second, that the behavior of the averaged
fusion cross section is given by (ov) ~ T2, isvalid aslong as
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the volume average temperature Ty is above 6 keV. The
third comes from neglecting the radiation losses with respect
to the alpha heating. To verify these assumptions, we use the
hot-spot solution derived in Ref. 8, where al the hot-spot
hydrodynamic quantities are obtained as functions of the hot-
spot radius and pressure.

We start with thefirst of Eq. (24) of Ref. 8, calculated at the
hot-spot center £ = 0. Observe that Eq. (24) is an integral
equation because the hot-spot mass My is a time integral.
Equation (24) can beeasily convertedinto asimpledifferential
equation for the central hot-spot density pﬁs:

0 o Ry 7/2 Pr?/ 2
Ohe + 3 Ppe —= =0.072 Kg—8_ 91
Pns T 9Phs R m' Ko ( 0 )5/2 5 (°1)

Pns S

where K0T5/2 represents Spitzer thermal conductivity. Equa-
tion (91) can be rewritten in a convenient dimensionlessform
by defining the following variables:

ﬁ:prcl)s/p*a IE)ZPhs/PO= (92)

T=imp/Ros  Rus = Rus/Ro. (93)

where Py, Ry are the hot-spot pressure and radius at the
beginning of the deceleration phase, and

0 py2 57/452/7

O = o47mu<o—m , (94)
0 POVImp

where & isdefinedin Eq. (40). Thedimensionlessform of the
density evolution equation becomes

dp 3p dRhS _DPDB/ 1

dT Rhs dr %H A§7/4 ’ (95)

which can be numerically solved once the hot-spot radius
and pressure have been determined by solving the set of
Egs. (58)—(61). Thecentral hot-spot temperature followsfrom
Eq. (24) of Ref. 8. A straightforward manipulation yields
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DY D2 D\/lmp(cm/S)D/ )

. (96
260 Haxo’ B a5z P

Ths(0.t) =8.3(keV)

where Y, isdefinedin Eq. (40). The hot-spot areal density can
also be determined by using Egs. (23) of Ref. 8 and the
definition of p, leading to the following expression:

Y, P cm/s
2 57 Do 07/ 0 PR (@7

pR=018(g/cm? )D26D g 3x1

To determine the stagnation value of the areal density,
Eq. (95) isnumerically solved using the radius and pressure of
the marginally igniting shells &y — o discussed earlier
[Egs. (64)]. Since the hot-spot density at the beginning of the
deceleration phase is negligible, we solve Eqg. (95) with the
initial condition p(0) — O leading to the stagnation value
pst =0.83. Substituting themarginal ignition condition Y, =
2.6 and Rstag =1 23/ \/7 into Egs. (96) and (97) yields the
stagnation value of the hot-spot areal density and central
temperature of marginally igniting capsules:

_ 2\ Dimp(cm/'s) 1

PR(stag) = 0.18(g/ cm ) BTy . (99
_ 4/7

Ths(r = 0,stag) =10(keV) ME (99)

A 3x107

To estimate the fraction 8, of absorbed alpha particles we
follow the work of Basko and set 6, = Min[1,8], where
6y =50 ORhS(p/ Thls'z) dr with T,,sinkeV and p in g/cm?. After
a straightforward manipulation, we find that for marginally
igniting capsules (i.e., Y, = 2.6),

@L (100)
H

0 3x107 7%
B4 ~M|n§.14 O
g Eclmp(cm/ S

indicating that the fraction of absorbed alphaparticlesisclose
to unity for implosion velocitiestypical of direct-drive ICF. If
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we require that 6 > 0.7 for the theory to be applicable with a
reasonably small error, then Eq. (100) providesaconstraint on
theimplosionvelocity, i.e., Vjmp<4x 108 (cm/s). Thenext step
isto determine the volume average temperature to verify the
assumption concerning the quadratic behavior of (gv). Inte-
grating Eq. (41) of Ref. 8 over the hot-spot volume yields
Ths=0.7Tps(0,t). The average temperature of marginal ignit-
ing capsules is then found from Eg. (99), and the resulting
condition Tj,s > 6keV |eadstoanother constraint ontheimplo-
sion velocity, i., Vimp > 2 % 107 (cm/s). In summary, both
assumptions are simultaneously satisfied aslong astheimplo-
sion velocity isin the range

2 %107 <Vipp(cm/s) < 4 x 108, (101)

whichisthetypical range of directly driven capsules. Observe
that the condition T, > 6keV also impliesthat the al pha heat-
ing is significantly larger than the radiation losses, indicating
that the bremmstrahlung term can indeed be neglected in the
energy equation.

Conclusions

A model for the decel eration phase and marginal ignition of
imploding capsules is derived by solving a set of ordinary
differential equations describing the hot-spot energy balance
and the shell dynamicsincluding thereturn shock propagation.
The change of adiabat induced by the shock isalso calculated,
and the relation between the in-flight and stagnation adiabats
is in general agreement with the numerical fit of LASNEX
simulations® and the self-similar solution of Ref. 6. The mini-
mum kinetic energy required for ignition is also calculated
from the same model. The marginal ignition scaling is deter-
minedintermsof thestagnation aswell asthein-flight adiabat.
Both scaling relations are in good agreement with the numeri-
cal fit of Ref. 5.
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