Three-Dimensional M odeling of Capsule Implosions
in OMEGA Tetrahedral Hohlraums

Introduction

To achieve ignition and gain in inertial confinement fusion
(ICF), a spherical target must be compressed with a highly
uniform drive mechanism.1=3 Perturbations in the drive can
lead to adistorted fuel core aswell as hydrodynamic instabili-
ties, which cause the colder ablator material to mix with the
fuel in the central hot spot, effectively quenching the nuclear
burn.4-% The direct-drive approach to achieving this uniform
implosion usesanintenselaser pulseto ablateaglassor plastic
shell and compressthefuel insidelikeaspherical rocket.” The
nonuniformitiesinherent in the laser beam tend to imprint the
target with a“ seed” that can cause debilitating hydrodynamic
instabilities. To avoid these high-spatial-frequency perturba-
tions, the lasers can alternatively be pointed at the inside of a
high-Z cavity called a hohlraum, which converts the laser
energy into asmooth x-ray radiation field that then compresses
asimilar capsule, again through a rocket-type ablation.2

Traditionally, hohlraums have utilized a cylindrical geom-
etry with two laser entrance holes (LEH’s) and azimuthal
symmetry. Recently, an alternative hohlraum geometry with
four LEH’sinaspherical casehasbeen proposed asameansfor
producing an extremely uniform radiation drive.89 These
“tetrahedral hohlraums” are particul arly well suited for experi-
ments on the University of Rochester’'s OMEGA laser facil-
ity10 since the soccer-ball geometry of the target chamber
possesses multiple beam configurations with perfect tetrahe-
dral symmetry. Accordingly, an extensive series of tetrahedral
hohlraum experiments have been carried out on OMEGA
under theleadership of the LosAlamosNational Laboratory, 1
in amultilaboratory collaboration.

This article reports on the three-dimensiona (3-D) view-
factor code BUTTERCUP, which hasbeen used to model these
experiments. Since the code wasfirst reported in Ref. 9, it has
been expanded to model the time-dependent radiation trans-
port in the hohlraum and the hydrodynamic implosion of the
capsule. Additionally, a3-D postprocessor has been written to
simulate x-ray images of the imploded core. Despite
BUTTERCUP's relative simplicity, its predictions for radia-
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tion drive temperatures, fusion yields, and core deformation
show close agreement with experiment.

The tetrahedral hohlraum experiments on OMEGA1! have
investigated the basic symmetry properties and uniformity of
capsule implosions, the radiation drive temperatures, and the
effect of high convergenceon neutron-yield degradation. M ost
of these experiments have used thin-walled gold hohlraums
with standard Novaimpl osion capsul esfilledwith DD gas. The
best results have been obtained from hohlraumswith an inner
diameter of 2800 um, LEH diameter of 700 um, and typical
capsule outer diameter of 550 um (see Fig. 82.44). The 60
OMEGA beams enter the hohlraum in four groups with 15
beams through each LEH. These 15 beams form three rings
with various angles of incidence, namely 23.2° (6 beams),
47.8° (6 beams), and 58.8° (3 beams). As with cylindrical
hohlraums, the beam pointing is constrained by minimum
clearance requirements to avoid absorption and/or refraction
through the plasma ablating off the capsule or the hohlraum
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Figure 82.44

Schematic of athin-walled tetrahedral hohlraum used for OMEGA implosion
experiments. One of four laser entrance holes (LEH’s) is shown with beams
entering at threedifferent angles(23.2°, 47.8°, and 58.8°). The standard Nova
capsule hasa550-pm outer diameter and a55-um-thick CH shell andisfilled
with 50 atm of DD gas.
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wall. Tetrahedral hohlraums have an additional pointing con-
straint, that of clearing an opposing LEH to avoid forming
plasma blowoff that would interfere with incoming beams.
Unlike cylindrical hohlraums, however, the spherical geom-
etry of the tetrahedral design eliminates the possibility of
“glint” (irradiation of the capsule by laser light specularly
reflected off the hohlraum wall at early times).12

The OMEGA soccer-ball geometry has numerous group
rotational symmetries, including that of each Platonic solid.
Thetetrahedral symmetry group isitself embedded inalarger,
dodecahedral group wherethe 60 beamscan bedividedinto 12
sets of 5 independent beams; therefore, pointing coordinates
must be calculated for only 5 different beams, and therest are
determined by rotationsin the dodecahedral symmetry group.
This property provides some inherent symmetry advantages
for the tetrahedral hohlraum, causing al | = 1, 2, and 5
spherical-harmonic components of the radiation drive to be
identically zero.8 For the specific hohlraum designs used in
thisarticle, thex-ray drivenonuniformity onthecapsule (o)
is aimost entirely dominated by the Ya, spherical-harmonic
mode®13 and, in the optimal designs, is less than 1% during
most of the laser pulse. This highly uniform drive has been
confirmed by x-ray images of imploded cores that are essen-
tially round to within the resolution of the instrument.1

Despite the remarkable symmetry properties of tetrahedral
hohlraums, the cylindrical design hasbeen traditionally domi-
nant inthe | CF field, largely because of its azimuthal symme-
try. Thus, cylindrical hohlraums can be modeled accurately in
a two-dimensional (2-D) geometry, while the tetrahedral
hohlraum is inherently a three-dimensional (3-D) problem.
Considering the complexity of even a2-D radiation hydrody-
namics code,1 it is understandable that there has not been
significant interest in the 3-D tetrahedral hohlraums until only
recently. With the recent progressin developing detailed 3-D
codes,” however, tetrahedral hohlraums offer anideal test-bed
for theoretical and experimental comparisons. As part of this
effort, we have written a 3-D view-factor code called BUT-
TERCUP, which includes radiation transport in the hohlraum
and a hydrodynamic treatment of the capsule implosion. Be-
cause of the highly uniform nature of these implosions, basic
3-D effects can be accurately modeled as perturbations on a
one-dimensional (1-D) model. Wewill explain thispseudo-3D
modeling technique in greater detail below.

Although BUTTERCUP does not model laser—plasma

interactionsin the hohlraum or the motion of the gold wall, its
simplicity is perhaps its most powerful trait, allowing for
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repeated calculations over a wide range of input parameters
and thus making it ideal for target design. For example, the
dimensions and pointing parameters for the hohlraums de-
scribed in Ref. 11 were largely based on results of BUTTER-
CUP calculations. Further, by using asimple energy diffusion
model, BUTTERCUP can predict the time-varying radiation
drive temperature T,(t) in the hohlraum. This agrees closely
with experimental measurements aswell aswith more sophis-
ticated hydrodynamic code cal culations. Neutron yields have
also been calculated by 1-D and pseudo-3D models and agree
well with initial experimental results. Additionally, a post-
processor has been written to simulate x-ray images of the
imploded capsul €' s self-emission. Comparisonswith thetheo-
retical core shapes and experimental images provide valuable
new insight into the relationship between a 3-D fuel core and
its2-D image and show in particular how a3-D distortion may
be emphasized or smoothed out.

Ultimately, the success of tetrahedral hohlraum experi-
ments on OMEGA will help to determine the feasibility of a
tetrahedral ignition design for the National Ignition Facility
(NIF). Whilethe NIF laser’s port geometry lacks true tetrahe-
dral symmetry, the addition of equatorial direct-drive ports
allowsfor apossible design that can focus 44 of the 48 quads
(four beams) into a tetrahedral hohlraum and still provide
excellent drive uniformity.®

In describing BUTTERCUP and its results, we will follow
acourse of increasing complexity, starting in the next section
with an explanation of astatic view-factor model that assumes
asingle albedo over the hohlraum wall. Thisincludes a zero-
dimensional implosion model, enabling the time-dependent
uniformity on the capsul e to be predicted for different tetrahe-
dral hohlraum designs on OMEGA, given the albedo as a
function of time. In a subsequent section weintroduce atime-
dependent model for the laser deposition and radiation trans-
port into the wall of the hohlraum, which allows the
time-dependent uniformity and radiation temperature T,(t) to
becalculated directly without referenceto the albedo. Wethen
discussin detail a pseudo-3D radiation-hydrodynamic model
for the capsule implosion that predicts convergence ratios,
low-order coredistortions, and fusion yields. We al so describe
a 3-D radiation postprocessor that allows direct comparison
between theoretical and experimental results.

This work shows that a relatively simple code can make
reasonably accurate predictions of hohlraum temperatures,
radiation drive uniformity, and the effects of core distortion
and high convergence ratio on neutron yield degradation.
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BUTTERCUP proves to be immediately useful not only in
experimental planning andinterpretation, but al soasanimpor-
tant tool for aiding in the devel opment of more-sophisticated
3-D ICF codes.

Fundamental Features of the Code BUTTERCUP

Themost basicfeaturesof BUTTERCUP includetheahility
to trace rays from multiple laser beamsin athree-dimensional
hohlraumand aview-factor algorithmto cal culatetheresulting
radiation uniformity on the surface of the fuel capsule.® Both
cylindrical andtetrahedral hohlraumscanbemodeledinafully
3-D geometry. In thetetrahedral geometry, thefour LEH’sare
located at the angular coordinates (6,¢) = [(54.7°, 0°), (54.7°,
180°), (125.3°,90°), and (125.3°, 270°)], whilein the cylindri-
cal geometry, the axis of the hohlraum is taken to be along
6 = 0°. The methods described below apply equally well for
either geometry, but we will be concerned primarily with the
tetrahedral orientation.

First, each laser beam is divided into a large number of
individual rays, each with an equal fraction of the total drive
power. The OMEGA beams are treated as circular coneswith
an f/6 focus. For hohlraum experiments on OMEGA, the
direct-drive phase plates are removed, giving alaser spot size
of about 50-um diameter at best focus. Once the beam is
divided, each individual ray is traced from an initial position
and direction through the hohlraum, allowing multiple geo-
metric reflections with a small amount of random scattering
until al the energy in the ray has been absorbed (usually no
more than two bounces). When the ray hitsthe hohlraumwall,
it deposits afraction A(8) of itstotal energy, given by

A(Bi):l—exp(—bcosr Gl), (1)

where the parameter b determines the absorption at normal
incidenceandthe parameter r givestheangular dependence. In
theabsenceof an accurate experimental determination of A(6)
in ahohlraum, wetaker = 1 and b = 3. These parameters give
an absorption of 90%for 8 =40° (thus99% after two bounces),
consistent with Nova data.1> Of the laser energy absorbed by
thewall, typically 60%to 70%isre-emitted asx-ray radiation;
the rest is lost to hydrodynamic motion and heating of the
hohlraumwall. Inthisstaticmodel, nolaser energy isdeposited
along the beam path and the time evolution of the gold plasma
is not simulated. The effect of wall motion on the irradiation
uniformity can be modeled by repeating the ray-trace calcula-
tion with the samelaser pointing but using different hohlraum
dimensions, such as might be obtained from 1-D hydrody-
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namic calculations of a tetrahedral hohlraum or 2-D calcula-
tions of acylindrical hohlraum. For theresultsreported in this
article, however, wall motion was not taken into account.

Despite these simplifications, we can still estimateasingle
background radiation temperature T, by assuming an eguilib-
rium Planckian radiation field in the hohlraum cavity. Follow-
ing Ref. 9, thetemperature T, is cal culated with abasic energy
equation6-18 that balances the power entering the radiation
fieldfromthelaser sourceandthepower lost fromtheradiation
field through the LEH’s and absorption by the walls and

capsule:

Ras =0 TA(NA, + By Ay +BcAc). @)

where P isthe total laser power absorbed by the case, ), is
the conversion efficiency from the laser to x rays in the
radiation field, o is the Stefan—Boltzmann constant, and the
term (NAy, + B Ay + B.Ac) may bethought of astheeffective
areaof thehohlraum. ThequantitiesAy,, A, and A aretheareas
of anLEH, thewall, and thecapsul e, respectively, inahohlraum
with N holes. The quantity 3, isdefined as 1-a,, where a,, is
thewall albedo, thefraction of the x-ray energy incident onthe
hohlraum wall that is reradiated into the hohlraum cavity;
B.(=1-a., wherea,isthecapsulealbedo) issimilarly defined.
Thewall albedo a,, increases with time and, at the peak of the
laser pulse, istypically 0.8 for OMEGA and 0.9 for the NIF.
Thecapsulealbedo a. istaken heretobesmall (0.1). Thex-ray
conversion efficiency n; generally depends on irradiation
conditionsandistakento be0.65 here. Thewall albedo may be
calculated as afunction of time and location on the hohlraum
wall (seethenext section); however, itisoften useful to assume
asingle, spatially invariant albedo that characterizes the aver-
age hohlraum conditions at agiven time. We makethissingle-
albedo assumption in this section.

For agiven albedo, BUTTERCUP cal cul atesthe blackbody
emissionfrom each point r onthehohlraumwall by combining
aspatially uniform background radiation source oT,* with the
absorbed laser intensity I(r) at that point. The actual emitted
flux 1&(r) dependson thewall albedo and the x-ray conversion
efficiency:®

le(r) = awoT# +ny1(r), (39)

where the spatial dependence of Ig(r) and I|(r) has been
explicitly retained. In this model the wall treats the x-ray and
laser sourcesindependently: i.e., afraction a,,, of theradiation
flux oT,% incident upon thewall from the cavity and afraction
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n, of thelaser flux 1,(r) absorbedinthewall areemittedintothe
cavity. The quantity r; as defined here includes the combined
effects of the conversion of the absorbed laser energy to x rays
and reradiation from the wall.

To illustrate this, suppose that the laser were converted to
X rays in the plasma with efficiency n; and the reasonable
assumptionweremadethat half wereemitted outward fromthe
wall and half were directed inward to be re-emitted with an
albedo ay,. (The use of a different ay, allows for the x-ray
energy fraction reradiated from the laser sourceto differ from
that reradiated from the cavity radiation source.) Equation (3a)
would then become

1
le(r) = ay 0T +2(L+ay)ni(r),  (30)
giving
1 I T
n =§(1+Uw)’7|- (30)

It isalso worth noting that EqQ. (3a), when integrated over the
wall, provides two source terms for the radiation field in the
cavity, a,,0T,*A,, and NP, consistent with Eq. (2), confirm-
ing that the same value of r7; must be used in both equations.

Assuming a Lambertian source, Eq. (3a) permits a bright-
ness (spectrally integrated power/unit area/unit solid angle)
Be(r) = Ig(r)/mrthat is independent of direction to be defined
at al points on the hohlraum wall. BUTTERCUP then uses a
3-D view-factor algorithm®1%-23 to calculate the radiation
drive uniformity on the capsule. For each point on the surface
of thecapsule, thetotal incident radiation-driveintensity 1(6,¢)
is determined by integrating the brightness Bg(r) of the wall
over all solid angles, as seen by the capsule, for the entire
visible hemisphere. The radiation drive as a function of time
can be determined by using time-varying input values for the
laser pulse shape P, 4(t) and the albedo a,,(t); the latter can be
inferred from experimental measurements, cal culated directly
as in the next section, or imported from a calculation by a
hydrocode. For agiven pulse shape, the albedo is only weakly
dependent on the hohlraum irradiation geometry. Theoretical
and experimental Novaresults can thusbe appliedto OMEGA
hohlraums with afair level of accuracy.

Since the radiation uniformity on the capsule depends

largely on the ratio of the hohlraum radius to the capsule
radius,2820 the changing size of the imploding capsule must
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be considered when cal cul ating the time-dependent drive uni-
formity. To do this, a zero-dimensional (0-D) “rocket model”
is employed, treating the capsule as a thin shell with atime-
varyingradiusr g (t) and massm(t). Following Lindl,2weuse
scaling lawsthat rel ate the abl ation pressure P, (dyn/cm?) and
the mass ablation rate m(g/ cm? /s) to powers of T,(t) (as
measured in hundreds of eV):

P,(t) =5.1 x 1012 T35(t),

m(t) =5.9 x 10° T3(t),

(4)
Pys(t) = 7.7 x 10% g3y,

M(t) et (1) = =471 [ Pa(t) = Pos()]

wherePggsistheinternal gaspressureof the capsule, assuming
adiabatic heating of the fuel. The radius of the shell rgg is
measured in centimetersand thetimetin seconds. Thissimple
model has been found to predict remarkably accurate implo-
sion tragjectories, giving a stagnation time of 3 nsfor PS22in
close agreement with experiment. Coupling the view-factor
vacuum radiation transport with the time-varying capsule
radiusthen givesapredictionfor thetime-dependent radiation-
drive uniformity on the capsule.

Figure82.45 showsthe spatial uniformity of thex-ray drive
incident on the capsule as a function of time for two different
tetrahedral designs. The dashed curves are the result of the
radiation source as determined from Egs. (2) and (3) coupled
to the 0-D rocket model. The time-dependent albedo used in
Egs. (2) and (3) was obtained from the wall-diffusion model
described in the next section. The results of this diffusion
model are shown asthe solid curves. Since the nonuniformity
istypically dominated (>90%) by the Y3, spherical-harmonic
mode, we show only the contribution from o5, wherethetotal
Orms 1S defined as in Ref. 22:

Oéns = Iz o, (5)
,m

For both designs, Fig. 82.45 shows a noticeable improvement
in drive uniformity later in time, which is primarily a conse-
guence of the converging capsule radius. Note that the simple
energy-balance calculation agrees quite well with the more-
detailed wall-diffusion calculation throughout most of the
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laser pulse. At early times, the single-al bedo assumption of the
energy-balance model breaks down since the energy that
should be confined to afew small laser-heated spotsis spread
over theentirehohlraumwall, predictingamoreuniformdrive.
Theeffect of thisearly nonuniformity ontarget performanceis
not expected to be significant, however, since little energy
irradiatesthe capsule at these times. Also, Eq. (2) impliesthat,
after thelaser turns off, the radiation temperature (and thusthe
drive nonuniformity) immediately goesto zero, whilein real-
ity the hohlraum wall acts as a heat reservoir, radiating stored
energy well after theend of thelaser pul se. Thisisimportant for
the targets discussed below, where peak compression and
neutron production occur several hundred picoseconds after
the end of the laser pulse.

4
2
g
o 0
©
-2
4 | |
0.0 0.5 1.0 15
4
g
&
© i
2 F -
4 | |
0 1 2 3
TC5118 Time (ns)
Figure 82.45

Predicted drive uniformity onthe capsul ein atetrahedral hohlraum. The oyms
present in the dominant spherical-harmonic mode Y3» is plotted versus
time for () the initial scale-1 design for a 1-ns sguare pulse and (b) the
optimized scale-1.2 PS22 design. The amplitude of g3 gives the rms
nonuniformity when all other modes are absent. The dashed curves were
produced by the energy-balance model described in the Fundamental Fea-
tures of the Code BUTTERCUP section, and the solid curves were calcu-
lated by the wall-diffusion model described in the Radiation Transport
and Diffusion section.

The first experimental tetrahedral hohlraums (shot on
OMEGA in March 1997) were designed to have the same
surfaceareaand total LEH areaasastandard cylindrical Nova
hohlraum, thus giving comparable drive temperatures for the
same laser pulse. This “scale-1" tetrahedral hohlraum had
Rease = 1150 um and R gy =450 um. The predicted radiation-
drive uniformity of 2% to 3% for a 1-ns flat-top pulse was
certainly good by most |CF standards,242° but the tetrahedral
geometry on OM EGA was capabl e of much better uniformity.
With the help of BUTTERCUP, the tetrahedral hohlraum was
redesigned to give the best-possible drive uniformity while
till maintaining reasonabl e radiation temperatures and suffi-
cient clearance for the laser beams.26 The optimized design,
known as a scale-1.2 hohlraum, had R ge = 1400 pum, R g4
=350 um, and different laser pointing parameters. The opti-
mizeddesign had atotal L EH areaof 1.54 mm?, alittlelessthan
the 2.26 mm? of a standard Nova hohlraum. Additionally, the
shaped laser pulse PS22 was used to achieve more-efficient
implosions and reduce laser—plasma instabilities in the
hohlraum. Figures 82.45(a) and 82.45(b) correspond to the
initial and optimized designs, respectively.

The difference between a peak drive uniformity of 3% and
oneof 1%isapparent when comparing experimental imagesof
theimploded cores, asshown in Fig. 82.46. Theinitial design,
with o3, ~ 3% at the peak of the drive, resultsin acorewith a
clear triangul ar shape[Fig. 82.46(a)], corresponding to weaker
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Figure 82.46

Experimental x-ray images!® of imploded capsule cores for the drive condi-
tions of Fig. 82.45, viewed through an LEH. The initial design (a) has a
predicted average drive uniformity of g3z ~ 2% to 3%, causing a character-
istic triangular core, while the optimized design (b) produced anearly round
core with adrive uniformity of g3z < 1%. The three pointsin the triangular
image are oriented toward the other three LEH’s. Image (a) wastaken with a
time-integrating pinhole cameraand image (b) with an x-ray framing camera.
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drive pressure at the pointson the capsul ethat directly facethe
LEH’s. Theresulting 3-D tetrahedron-shaped corelookslikea
triangle when viewed along the axis of one of its vertices
(throughalL EH). Withtheoptimized design, theimploded core
isamost perfectly round [Fig. 82.46(b)], representing one of
the most-uniform indirect-drive implosions recorded to date.

The optimized design for OMEGA benefits from a favor-
ableratio of the caseradiusto the capsul e radius. The tradeoff
isalower coupling efficiency dueto the ~40% extrawall area.
The tetrahedral geometry on OMEGA has the advantage,
however, that all 60 beams can be used, compared with a
maximum of 40 for cylindrical hohlraums. On the NIF, the
tradeoff between uniformity and efficiency will beakey issue,
especially for capsules with the larger convergence ratios that
will be required.

Radiation Transport and Diffusion

The simple zero-dimensional model described in the previ-
ous section works well for designing hohlraum targets and
estimating the radiation-drive uniformity, but it has some
significant shortcomings. For one, the assumption of asingle,
spatially independent albedo tendsto break down early in the
laser pulse, when the cold, unirradiated sections of the wall
typically have a much lower albedo than the laser-heated
spots.27:28 The energy-balance model also fails at later times,
after the end of the laser pulse, giving aradiation temperature
of zero. Additionally, the dependence on an external calcula-
tion or experimental measurement of the time-varying albedo
[imitsBUTTERCUP’sability to scan through awide variety of
pulse shapes and hohlraum designs. Finally, while the pre-
dicted time-dependent drive uniformity agrees qualitatively
with experimental data, it unfortunately providesno meansfor
guantitative comparison.

To address these limitations, BUTTERCUP has been ex-
panded to model the gold wall asa2-D grid of mass elements,
each with adifferent temperature profile and radiation bright-
ness. Each point on this 2-D grid is treated as a separate
problem in 1-D planar geometry, with the radiation transport
into thewall model ed by solving an energy diffusion equation.
Theboundary zone of each 1-D sectionisdriven by aradiation
source from other portions of the hohlraum wall and, for the
directly irradiated sections, a laser source. The deposited
energy then propagatesinto thewall (along x) according tothe
diffusion equation, assuming a single radiation and matter
temperature T, (x,t) at each point inthewall. Thistreatment is
similar to that of Tsakiris,2’ except that he used 1-D self-
similar solutions rather than individual 1-D calculations.
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Following Rosen?%:30 we use the diffusion equation

%(pe) :%%AR G(%(aTﬁ)E (6a)

in the interior of the wall, and apply

0
a(PfAX):%/\R %(ava,‘) -oTg# +

— —
lossto laser
hohlraum source

cavity

diffusion

+L1aT(r)cosodQ (6b)

radiation
source

tothe boundary zone. Here pgisthe energy density of thewall
material (ergs/cm3), which scalesas T2, the diffusion coef-
ficient is 1/3 cAg, and aTy[a=40/c| is the radiant energy
density. TheRosseland mean freepath Ag isgivenasafunction
of temperature and density.2° The last term in Eq. (6b) is the
radiation flux seen by the point on thewall, integrated over all
solidangles(i.e., over all other boundary zonesonthehohlraum
wall). Thisterm couplestogether all the individual 1-D diffu-
sion calculations: each boundary zone emitsinto the hohlraum
cavity aflux aT,(r) [brightness aT,(r)/m], of which alarge
fraction provides a source for other boundary zones and a
smaller fraction islost to the capsule and LEH's.

In Eqg. (6b), Axisthethicknessof the boundary zone, where
the energy from the laser and radiation source termsis depos-
ited. Inthelimit of Ax - Otheleft-hand side of Eq. (6b) tends
to zero (i.e., the boundary cell has negligible heat capacity),
and Eq. (6b) then acts as aboundary condition on 9T /dx for
the diffusion equation. It is for this reason that the numerical
solutions of Eq. (6) are convergent (i.e., independent of Ax) as
Ax - 0. Inthislimit, thelaser source and theincident radiation
from the other zones on the hohlraum wall balance the radia-
tivelossinto thehohlraum cavity andthediffusivelossintothe
hohlraum wall.

The term [0 Tyi(r)cos@dQ is calculated in a way very
similar to the view-factor integration used to determine the
radiation incident on the capsule. Figure 82.47 shows a sche-
matic representation of this algorithm, where the incident
radiation intensity at a given point P on the hohlraum wall is
determined by tracing rays over all solid angles and summing
therelative brightnessdetected from each direction. Of course,
the LEH’s do not contribute anything to the incoming radia-
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tion, and the low-albedo capsule acts effectively as a shield,
blocking the radiation transfer between opposite sections of
the hohlraum wall. If no capsule were present, the spherical
geometry would provide perfect radiation uniformity incident
on every point of thewall not directly heated by alaser source,
regardless of the spatial emission distribution or the size of the
LEH’s, as long as the spectral brightness is independent of
angle (i.e., Lambertian) as is the case for blackbody radia-
tion.2” This makes tetrahedral hohlraums particularly well
suited for nonimplosion experiments that require a uniform
x-ray source for driving foils or other packages mounted on
the hohlraum wall.

Here, asinthe previous section, the emitted wall brightness
is taken to be o T4 (r)/m independent of angle. Thisis prob-
ably a good assumption except at very early times when the
steep gradient of T, within the wall (see Fig. 82.48 below)
results in different angles viewing different values of T,, at
about one optical depth into the wall. An angle-dependent
brightness could be added to the model.

Itisinstructiveto compare Eq. (6b) with Eq. (3a), obtained
for the ssimpler model of the previous section. The radiation
sourceterm of Eq. (6b) may bewrittenas o T3(r), defining an
effective hohlraum temperature Tr(r) as seen by apoint r on

TCA4795

Figure 82.47

Schematic of the view-factor algorithm used by the code BUTTERCUP to
calculate radiation transfer within the hohlraum. The x-ray flux incident at
each point P onthewall isdetermined by integrating the visible brightness Be
over ahemisphere of solid angle. The low-albedo capsule acts effectively as
a shield, blocking the radiation transfer between opposite sections of the
hohlraum wall.

the wall that is analogous to T, of the previous section.
Generally the spatial dependence of Tg(r) is weak: as stated
previously, Tr(r) would be independent of r for a spherical
hohlraum in the absence of acapsule. This providesjustifica-
tionfor theuseof asingle T, intheprevious section to describe
the radiation field in the cavity. It is also possible to define a
local albedo a,(r) =1 - Bo(r) by requiring Bo(r)o TA(r) to
equal (-1) times the first term on the right-hand side of
Eqg. (6b), i.e., the diffusive loss into the wall. With these
definitions, theflux of x rays emitted into the hohlraum cavity
becomes

o Ty =ay(r)aTg(r)+m(r), (7

which compares closely with the right-hand side of Eq. (3a).
Thefirst model can thus be expected to best match the second
model if a,, is taken to be the average of a,(r) over the
hohlraum wall.

An example of the nonlinear heat wave (Marshak wave3?)
described by Eq. (6) isshowninFig. 82.48, for an unirradiated
section of the gold wall. Here the wave is plotted at 100-ps
intervalsfor anillustrative calculation in which ahohlraum s
driven by a 1-ns sgquare pulse. The penetration rate is com-
monly approximated as being proportional to +/t ,29:31.32
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Figure 82.48

Wall temperature T,y as a function of distance into the gold wall, plotted at
100-psintervals throughout a 1-ns square-pul se drive shot. For the duration
of the laser pulse, the temperature at the boundary rises as the Marshak
radiation wave propagates into the hohlraum wall; it then decreases as the
wall cools after the laser is turned off.
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although this approximation breaks down when blowoff and
other effects are included.162% Even after the laser is turned
off, the radiation continues to diffuse into the wall; however,
much of the energy in the radiation field within the hohlraum
cavity leaks out through the LEH’s, lowering the temperature
at the boundary surface. Note that it is not necessary to
calculate the albedo explicitly in this model: the radiation
emitted into the hohlraum from each boundary cell is given
directly from the T,, there as o T,y .

With the temperature T, defined at each point on the
hohlraumwall, it isstraightforward to predict what the experi-
mentally measured radiation temperature T, will be asafunc-
tion of time. For the tetrahedral hohlraum experiments on
OMEGA, T,(t) was measured with the multichannel soft x-ray
diagnostic Dante.33 This looked directly through one of the
LEH’s, viewing acombination of laser spots and unirradiated
wall, representative of what the capsule should see, and thus
eliminating the need for “albedo corrections.”34 For a22.0-kJ
PS22 drive shot (i.e., ashot without a capsule), the theoretical
and experimental temperatures were in close agreement, as
showninFig. 82.49.1 Thedataarefromascale-1.2 tetrahedral
hohlraum with 500-um-radius LEH’s (larger than the 350-um
LEH’s used for the optimized implosions). For the BUTTER-
CUP calculation, the experimental ly measured SBS backscat-
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Figure 82.49

Hohlraum radiation temperature T, as afunction of time for a 22.0-kJ PS22
drive experiment with 500-um-radius LEH’s. The LASNEX predictions
(dotted curve) and the experimental data(solid curve) measured by the Dante
multichannel, soft x-ray diagnostic are taken from Ref. 11. The dashed curve
isthe BUTTERCUP calculation, with the input laser power P55 adjusted for
the experimental SBS backscatter fraction of 6%.
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ter fraction of 6% wastaken out of the input laser energy. The
close agreement with experiment indicates that the basic
hohlraum energetics can be accurately modeled with
BUTTERCUP's relatively simple combination of diffusion
and view-factor calculations.

By thismethod of performing multiple 1-D diffusion cal cu-
lationsona?2-D grid covering the hohlraumwall, and coupling
them together through view-factor radiation transport, BUT-
TERCUP provides a 3-D description of the time-dependent
radiation uniformity on the capsule. This approach allows
remarkably rapid simulations without sacrificing physical
accuracy. Sincefully 3-D radiation-hydrodynamicscodestypi-
cally take hundreds of CPU hoursto do asingle simulation on
even the fastest supercomputers, pseudo-3D calculations like
those presented here will be increasingly valuable. The speed
of BUTTERCUP also providesthe ability to perform multiple
simulations with different hohlraum parameters, making the
code an ideal tool for developing new target designs.

The evaluation of the effects on uniformity of pointing
errors and beam imbalance provides a good example of the
type of problem for which BUTTERCUP is ideally suited.3®
With each point on the hohlraum wall being model ed indepen-
dently, the computational overhead associated with changing
the beam pointingsand energiesisvery small, even though the
tetrahedral symmetry islost.

One limitation of the model is the assumption of an ideal-
ized blackbody radiation spectrum. For example, it would not
be correct to treat M-band radiation from multi-keV laser-
heated plasma with Eg. (6), which emits blackbody radiation
into the hohlraum with the temperature of the dense wall
plasma. Here, following Eq. (3c), it would be reasonable to
assume that half of thisradiation is emitted into the hohlraum
and half is lost in the wall (with ay, =0). The flux and
uniformity of M-band radiation on the capsule could neverthe-
lessbe cal culated with the model of the previous section using
ay =0 and taking nj to give the observed emission of
M-band radiation from the hohlraum wall.

We conclude this section by demonstrating that the simple
energy-balance model described in the previous section pro-
vides aremarkably accurate description of the radiation tem-
perature T, (t) whengivenasingle, spatially averaged albedo as
afunction of time. This may be seen from Fig. 82.50, which
plots T,(t) for (a) the initial design (1-ns square pulse) and
(b) the optimized design (PS22 shaped pulse). Thesolid curves
correspond to the more accurate wall-diffusion model and the
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dashed curves to the energy-balance model. Here we use the
spatialy averaged albedo (dotted curves) calculated by the
wall-diffusion model as input for the energy-balance model.
For both cases the albedo rises rapidly to about 0.8. For the
duration of the laser pulse, the two models agree very closely,
suggesting a close equilibrium between the incident laser
power and the radiation field. After the laser pulse ends, the
albedo becomesgreater than unity sincethe cooling wall emits
more energy than it absorbs. Thisisalso the point at which the
energy-balance model breaks down completely, as the 3, in
Eq. (2) becomesnegative, theleft-hand side of Eq. (2) becomes
zero, and thewall actslikearadiation sourcerather than asink.

Capsule Implosions
Given the 3-D, time-dependent radiation field incident on
thecapsule, BUTTERCUP al so providesapseudo-3D model of
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Figure 82.50

Hohlraum radiation temperature T, as a function of time for two implosion
experiments: (@) scale-1 hohlraum with a 30-kJ, 1-ns square pulse (initial
design); (b) scale-1.2 hohlraumwith a24.6-kJ, PS22 shaped pul se (optimized
design). The wall-diffusion model produced the solid curves and a time-
dependent, spatially averaged al bedo, defined here asthetotal power radiated
from the hohlraum wall divided by the total radiative power incident on the
wall (dotted curve); this albedo was then used asinput in the energy-balance
model to give the dashed curves.

the actual hydrodynamic capsule implosion within a tetrahe-
dral (or cylindrical) hohlraum. For agivenx-ray driveintensity
1,(6,¢1) on the surface of the capsule, theincident radiationis
treated as a blackbody spectrum and deposited into the plastic
shell in multiple energy and angular groups. Like the pseudo-
3D treatment of the gold wall, the capsule is modeled as a
collection of 1-D calculations, each with its own radiation
source term. Unlike the treatment of the gold wall (wherejust
the Rosseland opacity is used), however, the radiation trans-
port within the capsule plasma is modeled in greater detail
using multigroup opacities.36

Each angular wedge of the capsule is modeled as a spheri-
cally symmetric problem with 1-D Lagrangian hydrodynam-
ics. About 100 material zones are typically used in the radial
direction, withroughly half intheshell and half inthefuel. The
radiation energy fromthehohlraumwall isdepositedinthe CH
plasma using an Sy algorithm, which divides the incident
radiation into different angular groups,3” asis represented by
Fig. 82.51. The x rays that are nearly normal to the surface
penetrate deeper into the shell, while the higher-angle x rays
deposit the majority of their energy closer to the outside of the
capsule. Since opacities are often quite sensitive to photon
energy, the Planckian spectrum from the hohlraum wall is
divided into multiple frequency groups, each containing a
fraction of the blackbody radiation flux o T, and each pen-
etrating the plastic shell to a different depth.

I, from
hohlraum wall

- ——

TC5121

Figure 82.51

Multiple angular groups used to model radiation absorption in the capsule
shell. X rays with small angles of incidence 64 penetrate deeper into the
ablating plasma, while higher-angle groups deposit their energy closer to the
outside of the capsule.
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BUTTERCUP model sthe capsuleimplosion by solving the
1-D spherical Lagrangian hydrodynamic equations, including
electron thermal diffusion and multigroup radiation diffusion
within the capsule. The basic hydrodynamic equations in a
spherically symmetric geometry are3’

or

— =V,

ot

ov 0

—=—4mr2 — (P 8
ot o (PO ®)
o€ _ 0 (5

e 4n—(r v)(P+Q),

where P isthehydrodynamic fluid pressure, Q isthe“artificial
viscous stress,” r and v are the position and velocity of
Lagrangian zone markers, and dm is the differential mass
element. For each step of the calculation, P and the specific
energy ¢ (ergg/g) are determined from the SESAME equation-
of -state tables.38 The electron thermal diffusion is calculated
using

2 (pe)=-010 0 (5 o), ©

where T, is the electron temperature, here assumed to be the
same as the ion temperature T;; Kq is the thermal diffusion
coefficient, afunction of the temperature, density, and ioniza-
tion of the plasma.

Themultigroup radiation transport ismodel ed intwo steps:
first by angular Sy absorption from the hohlraum wall and
thenwith amean-free-path diffusion approximation withinthe
capsule. The absorption is determined®® by the opacity |,
corrected for stimulated emission [k, =k (1-e~hv/kT)] and
the incident intensity I, for each frequency group:

d ,
d_‘S/:_KVIV’ (10)

where s measures distance in the appropriate direction. Thus,
in aregion of constant opacity, |, falls off exponentially. The
internal diffusion eguation, including emission and reabsorp-
tion, is

au,,
at

-0[{Dp U, ) = k) (Uyp -V, ), (12)
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where U, is the spectral radiation energy density (ergs/
cm3/unit frequency), Uyp is the Planckian radiation energy
density for agiventemperature, D, isthefrequency-dependent
diffusion constant (= c/3«y,), and c is the speed of light.

BUTTERCUP uses opacity data from the Los Alamos
Astrophysical Tables,36 which include opacities for val ues of
hv/KT between 0.00125 and 30000. For the small humber of
points outside this regime, the data are interpolated between
the cold opacity and the closest-known tabular opacity. As
showninFig. 82.52(a), thepeak x-ray power absorptionduring
the laser pulse occurs in the shell near the steepest density
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Figure 82.52

(a) Evolution of 1-D Lagrangian interface markers during a PS22 implosion
with 50 atm of DD fuel inside a standard Nova capsule. The region of peak
x-ray power absorption closely follows the steepest density gradient in the
ablating shell for the duration of the laser pulse. The dashed curve showsthe
trajectory of athin shell predicted by the0-D rocket model. (b) Vel ocity of the
shock front propagating through the capsule as a function of time. The first
shock breaks out from the shell into the DD fuel at 1.5 ns and converges on
the origin at 2.6 ns, followed by the second shock convergence at 2.9 ns.
Stagnation and bang time, the time at which the neutron production rate Y
peaks, occur at t ~ 3 ns.
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gradient, unlikedirect-driveimplosionswherethel aser energy
is deposited in the plasma corona and must be transported
inward toward the ablation front. Even after the laser pulse
ends, the hohlraum still provides significant radiation drive,
penetrating deep into the ablating shell.

Indirect-drive capsule implosions involve both radiative
and shock heating in addition to the adiabatic heating and
cooling of the plasma?? The velocity of the shock front,
defined asthe point of maximum artificial viscous pressure, is
shown as afunction of timein Fig. 82.52(b), anegative value
indicating convergenceinward. Thefirst shock isdriven by the
~150-eV radiation temperature produced during the foot
portion of the laser pulse. When it breaks out on the inside of
the plastic shell, it experiences “velocity multiplication,” a
general phenomenon that occurs whenever a shock wave
crosses a boundary from a denser material to a lighter
material. Figure 82.52(b) shows that the shock speed jumps
from 6 x 106 cm/sto 1.2 x 107 cm/saround t = 1.4 ns. Then, as
the radiation drive from the hohlraum increases near the peak
of the laser pulse, the shell and fuel accelerate inward until
2.6 ns, when the first spherical shock wave converges at the
origin and sends areverse shock outward through the fuel. At
2.75 ns, thisreflected shock meetsthe imploding plastic shell,
which continues to converge until stagnation around 3.0 ns.

Thepoint of stagnation closely correspondstothepeak core
temperature and also to the time of peak neutron production,
referred to as the “bang time.” The density and temperature
profilesof thecoreat bangtimeareshowninFig. 82.53, plotted
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Temperatureand density profilesfor the DD fuel and surrounding CH ablator
in the capsule core at bang time (3.0 ns), which closely corresponds to
hydrodynamic stagnation. Thefuel isassembledinasmall, hot region of low-
density gas surrounded by the colder, dense plastic pusher. The convergence
ratio (R; /Rs for the CH-DD interface) for this PS22 implosion is about 10.

as functions of distance from the capsule center. The results
shown are from a standard PS22 capsule implosion at t
= 3.0 ns, with the DD fuel assembled in a hot, central region
surrounded by the cold, dense plastic shell. The radius of the
fuel—pusher interfaceis Ry =23 um, giving aconvergenceratio
of Cr ~ 10.

BUTTERCUP calculates the neutron yield from the
D(D,n)3He reaction using Hively’s formulas for Maxwellian
distributions.#! Sincethisreaction isso strongly dependent on
temperature,*2 almost the entire yield occurs during a short
(~200-ps) time when the fuel reaches its maximum tempera-
ture and density. Figure 82.54 shows this nuclear burn profile
as a function of time for a standard PS22 implosion with a
bang time of 3.0 ns. The “foot” of the neutron pulse corre-
spondsto the second spherical shock converging at the origin,
as shown in Fig. 82.52(b), which raises the average fuel
temperatureto 0.7 keV. Thisisfollowed by the peak compres-
sion and stagnation, when most of the neutrons are produced.
After bangtime, thecorerapidly coolsby thermal andradiative
diffusionintothesurrounding cold material, aswell asthrough
adiabatic expansion.

The spherical uniformity of capsule implosions is fre-
guently assessed by comparing the experimental fusionyields
to those predicted by a purely one-dimensional calculation.
Usually referred to as “yield over clean” (YOC), this ratio
provides an indication of how the capsule’s 3-D distortion
affects the neutron yield and thus the success of the implo-
sion.*344 The cause of core distortion may be understood on
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D(D,n)3Hefusion yield asafunction of timefor astandard implosion driven
with PS22. Also shown arethe average fuel temperature and theradius of the
fuel—pusher interface. The very strong temperature dependence of thefusion
rate results in almost all neutron production occurring within about 200 ps.
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avery simplelevel. Following Wallace, > theimplosion vel oc-
ity scales as

Vimp 0T+ |r3/8a (12)

so for a peak-to-valley variation in drive uniformity of 10%
(typical for ogyy,s = 2.5%), there should be a peak-to-valley
difference of about 4% for the implosion velocity. For a
convergence ratio of 10, this means that at the point of maxi-
mum compression, the core distortion—as measured by a/b,
the ratio of major to minor axes—will be 1.56. For a peak-to-
valley difference of 2% in drive uniformity, however, the
resulting coredistortionwill beonly 1.07, or nearly round. For
a high-convergence capsule with the same drive uniformity
and C, = 30, a/b = 1.28. While this model is conceptually
hel pful to understanding therel ation between driveuniformity,
convergence, and core distortion, we find that it generally
overpredicts the values for a/b. This is probably because it
omits the decel eration and stagnation caused by the gas pres-
sure of the compressed fuel, as well as 3-D hydrodynamic
smoothing effectsthat takeplaceduringtheimplosion, causing
the relation in Eq. (12) to break down.

BUTTERCUP uses a pseudo-3D agorithm to model more
accurately the effects of nonuniform drive on acapsuleimplo-
sion and thus predict the core deformation as well as the
neutron yield degradation. Just as the hohlraum wall is mod-
eled in pseudo-3D by coupling alarge number of 1-D calcula-
tions, thecapsuleismodel ed by performing many 1-D spherical
implosion calculations at the same time and coupling them
together. As with earlier work that investigated deviations
fromuniform spherical implosionsusing aspherical-harmonic
expansion, 8 this approach is best suited toimplosionsthat are
close to spherically symmetric.

To divide the capsule into multiple 1-D wedges of equal
solid angle, we take advantage of the unique dodecahedral
symmetry of the OMEGA target chamber. As mentioned pre-
vioudly, the 60 laser beams can be divided into 12 groups of
five independent beams. Only these 5 beams need to be
explicitly model edin the hohlraum; the other 11 groups can be
added by rotating the original group, greatly simplifying the
3-D problem. Similarly, the spherical capsule can be divided
into 12 pentagonal wedges, all interchangeabl e through trans-
formationsin the dodecahedral rotational group. Figure 82.55
shows schematically how the sphereisdividedinto pentagonal
wedges, only one of which is actually modeled. This wedge
corresponds to one group of five laser beams and a section of
the hohlraum wall including one-third of an LEH.
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The pentagonal wedge of the capsule is then divided into
triangular slices, each with the same solid angle and all con-
verging at the same origin. For convenient division into sym-
metric wedges, 10, 30, or 90 triangular slices are typically
used. All of these slices are modeled simultaneously with the
spherical 1-D Lagrangian hydrodynamic model described pre-
viously. Each has a unique radiation-drive input, determined
by the dynamic model of the hohlraum wall and the 3-D view-
factor radiation transport. For most tetrahedral implosions, the
radiation drive can be thought of as nearly uniform, with a
small, time-dependent Y3, perturbation. Thiswill inturn cause
anearly spherical implosion, with Y3, variationsin the hydro-
dynamic variablesthroughout the capsule. Thisisvery conve-
nient since the spherical harmonic functions are solutions to
the angular portion of the diffusion equation in a spherical
geometry:47

%f(r,e,(m):D@(r)Df(r,H,(pt). (13)

For short times At, over which the diffusion constant D(r) can
be treated as static, solutions are eigenfunctions of the form

f(r,0,@At) = R(r,At) U, (6 gAt), (14)

where

U (6.00)= 3 iY@ e T

o OMEGA beam
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Figure 82.55

Geometry used by BUTTERCUP to model a 3-D capsule implosion in a
tetrahedral hohlraum on OMEGA. Using the natural dodecahedral symme-
try, the spherical target is divided into 12 pentagonal-shaped wedges. Each
wedge contains one-third of an LEH and fiveindependent laser beams. This
pentagonal wedge of the capsule isin turn divided into multiple triangular
wedges of equal solid angle. Each triangular wedge ismodeled with asingle
1-D hydrodynamic calculation and is then coupled to neighboring wedges.
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and R(r,At) iscal culated withthe 1-D spherical hydrodynamics
of Egs. (8)—(11). InBUTTERCUP, f (r,6,¢1t) represents either
the electron temperature or the energy density of aradiation
group, and Eq. (15) isused to calculateitsevol ution over short
periods of time At. For tetrahedral hohlraums on OMEGA,
only the Y,(6,¢) spherical-harmonic functions with dodeca-
hedral symmetry will have nonzero coefficients in the sum.
Just asthe Y3, moment dominatestheradiation incident onthe
capsule, it is also the primary term in the angular diffusion
equation and typically the only term explicitly calculated.

For the angular portion of each 3-D diffusion step, the
Lagrangian hydrodynamic variables are projected onto an
orthogonal, Eulerian-type grid. This allows BUTTERCUP to
solve Eqg. (15) for each concentric spherical shell of material,
asopposed tolateral diffusion between L agrangian zoneswith
the sameradial index that may belocated at different physical
radii. After theangular diffusion cal cul ation, the new val ues of
the temperature are projected back onto the pseudo-3D La
grangian grid. This alternates with the separate 1-D hydrody-
namic calculations (including diffusionin ther direction) that
changethevaluesof R(r) and D(r) for eachangular zone, which
arethen used asinput for the next iteration of the 3-D diffusion
calculation. Inthisway, thetriangular slices of the capsule are
coupled to produce a pseudo-3D implosion simulation.

Sincethisalgorithm doesnot includelateral masstransport,
it cannot model more-complicated 3-D phenomenalike shock
dispersion and hydrodynamicinstabilities. Furthermore, since
the converging radiation shock waveisnot perfectly spherical,
there can be sharp discontinuities in the hydrodynamic vari-
ables as the wavefront propagates through the material. At a
given radius near the shock front, some material may be cold
and uncompressed, while the material in a neighboring zone
may have been heated and compressed by the shock. At this
point, the assumption of a smooth Ys, perturbation in the
temperature breaks down; however, for the tetrahedral hohl-
raum implosions performed on OMEGA, we find that this
pseudo-3D model provides reasonable predictionsfor experi-
mental observations.

Specifically, BUTTERCUP was used to model a set of
recent experiments on the OMEGA laser that utilized tetrahe-
dral hohlraums to achieve high-convergence implosions.8:49
Indirect-drive capsules with convergence ratios as high as 20
to 30 have been shot previously on Nova*3 and OMEGA in
cylindrical geometry, typically giving Y OC measurements of
5% to 25%. By using the improved drive uniformity available
with tetrahedral hohlraums, it was hoped to eliminate the

102

effects of low-order nonuniformity on the fusion-yield degra-
dation. For the first series of high-convergence tetrahedral
experiments conducted in September 1998 and reported in
Refs. 48 and 49, convergence ratios of about 10 to 20 were
achieved, with values of YOC similar to earlier results using
cylindrical targets with the same convergence. The high-
convergence capsulesweredesigned by varying theinitial DD
fill pressure, with lower-pressure capsules giving higher con-
vergence. The experiment used 550-um-diam capsules with
55-um CH shells filled with 50, 25, and 8 atm of DD gas,
corresponding to theoretical convergence ratios of 9, 11, and
16, respectively. They weredriven with all 60 OM EGA beams
with pulse shape PS22, delivering 21 to 25 kJ of UV light into
the hohlraum.

Figure82.56(a) showshow the predicted neutronyieldsand
convergence ratios depend on the DD fill pressure. Low-
pressure capsules not only converge to a smaller radius, but
they also reach higher core temperatures, leading to higher
fusionyieldsevenwith significantly lessfuel. BUTTERCUP’s
yield predictionswith 3-D effectsincluded are also shown. As
expected, for higher-convergence implosions, the predicted
3-D vyields are lower with greater degradation from the 1-D
prediction. Figure 82.56(b) shows a plot of Y OC versus con-
vergence ratio, including both experimental4® and predicted
YOC. A quantitative summary of the predicted results is
presented in Table 82.VI.

We believe that the major mechanism for yield degradation
inthe pseudo-3D model isthethermal transport of energy away
fromtheareaof thefuel that isheated earliest intheimplosion.
As in the 1-D simulation, the fuel temperature increases
significantly asthefirst and second shock waves converge on
theorigin, but with the 3-D simulation, thisoccurs at different
timesfor different fuel wedges. Assoon asthe strongly driven
regions of the capsule heat up, they transfer their thermal
energy to cooler neighboring zones. Not only doesthisreduce
the yield of the hotter zones, but it also reduces the potential
yield of the cooler zones by increasing their adiabat and
making an efficient implosion more difficult to achieve. The
higher-convergence capsules (Cr ~ 20) had the higher 1-D
temperature predictions (T; = 1650 eV) but also experienced a
greater reductionin coretemperaturedueto 3-D effects(<70%
of 1-D temperature), whichisclearly reflected in the degraded
yield predictions (YOC = 17%).

The preliminary experimental data of Fig. 82.56(b) seem

to exhibit amore rapid fall off with convergence ratio than the
BUTTERCUP calculations, although alarger datasetisneeded
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to quantify this. It appearsthat BUTTERCUP can explain only
some of the YOC reduction at higher Cg. The comparison
suggests that, even with the best drive uniformity, hohlraum
capsulesarestill susceptibleto asymmetric shock convergence
and other 3-D effects like Rayleigh-Taylor instabilities asso-
ciated with physical defects caused during target manufactur-
ing. Future experiments will hopefully help to identify the
relativeimportanceof irradiation nonuniformity and hydrody-
namic instabilities.

X-Ray Postprocessor

One of the traditional ways!14451-53 to assess hohlraum
driveuniformity issimply toimplode acapsule and look at the
shape of the core: round indicates good uniformity and ellipti-
cal (in acylindrical hohlraum) or triangular (in a tetrahedral
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hohlraum) indicates poor uniformity. Experimentally, thiscan
be done with atime-resolved x-ray-framing camera or with a
time-integrated pinhole camera at high magnification. A pin-
hole camera with filtering chosen to absorb soft x rays auto-
matically selects the bang-time image since the x-ray film
detectsmainly thehigh-intensity emissionfromthehottest part
of the capsule. Sincethefuel isusually so much hotter thanthe
surrounding plastic shell, theactual shapeof thefuel coretends
tobewell highlighted. In someinstances, toimprovethe x-ray
imaging, asmall amount of high-Z gas such as argon or neon
is added to the fuel, emitting higher-energy x rays at the same
temperature. A thin film of beryllium is typically used as a
filter on either camera to block out the low-energy radiation
(s2 keV) coming from the pusher region.
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Figure 82.56

(a) Predicted 1-D and pseudo-3D yieldsand convergenceratio asafunction of DD fuel pressure; (b) 3-D yield degradation (solid line) asafunction of calculated
convergence ratio, along with experimental measurements of these yields.49 The theoretical yield degradation accounts only for effects caused by drive
nonuniformity and not hydrodynamic instabilities. The experimental Y OC values were based on experimental yields and 1-D BUTTERCUP predictions.

Table82.VI: Summary of BUTTERCUP 1-D and 3-D predictions for the convergence ratio (CR), neutron yield (Y),
peak temperature (T), peak areal density (pR), core distortion (a/b), and yield-over-clean (YOC) ratio for
capsule implosions driven by a PS22 laser pulse. Predictions of Cr and peak pR are similar for 1-D or 3-D
caculations.

DD fill Cr Y (3-D) Y (1-D) | Peak T (3-D) | Peak T (1-D) Peak pR a/b YOC
(atm) (108) (108) (eV) (eV) (mg/cm?) (theory)
4 205 0.64 37 1125 1650 5.8 1.20 17%

8 16.2 11 51 1150 1525 7.1 114 21%
15 13.0 15 52 1075 1350 8.7 112 28%
25 11.0 16 4.2 1000 1175 10.0 111 37%
50 9.0 11 21 825 900 12.6 1.06 51%
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BUTTERCUP creates an image of the imploded core by
analyzing the results of its hydrodynamic calculation with a
3-D radiation postprocessor. Thefirst stepisto reconstruct the
entire capsule by copying and rotating the single pentagonal
wedge modeled by BUTTERCUP 11 times, piecing together
the 12 sections of a dodecahedron. This produces a complete
three-dimensional model of the capsule, which isthen rotated
to givethecorrect orientation with respect to thex-ray camera.
The complicated 3-D Lagrangian mesh can be projected onto
a2-D image by ray-tracing agrid of parallel linesthrough the
3-D capsule. Along the path of each ray, BUTTERCUP solves
themultigroup radiation-transport equation,3?whichissimilar
to Eq. (10), except now with an additional sourceterm|,,, the
blackbody intensity (erg/s'cm?/unit frequency):

%£§=Ky(bp—|v) (16)

Figure 82.57 shows a schematic of this procedure, including
the Be filter and the x-ray film. The complicated 3-D mesh
portrayed in this figure was constructed by connecting the
centers of all adjacent Lagrangian zones, where each indi-
vidual zone has the shape of atriangular prism. Upon exiting
the capsule, each ray on the 2-D grid will have its own x-ray
intensity spectrum over therangeof relevant frequency groups.
This spectrum isin turn filtered by the beryllium (using cold

Peak emission 3 to 4 keV —

A - A -
> >
>
> >
> >

A -

>
> >
> >
Sz . .

Teues 5-mil Film
Befilter

Figure 82.57

Algorithm for simulating experimental x-ray images. A multigroup x-ray
postprocessor solves the radiation transport equation along rays traced
through the 3-D Lagrangian grid of the capsule. A 5-mil (127-um) beryllium
filter is used to remove low-energy signals coming from the colder plastic
shell, giving aview of only the hot central fuel region.

opacities at solid density) and then integrated to give asingle
intensity point on the x-ray film. The resulting postprocessed
image can then be directly compared with experimental data,
either time averaged or time resolved.

Figure82.58 showsthe simul ated x-ray image of astandard
PS22 implosion at bang time. Qualitatively thisimageisvery
similar totheexperimental image of Fig. 82.46(b): both appear
round to within experimental error. It should be noted that the
formation of thisprojectedimageprovidesan apparent smooth-
ing of the actual 3-D distortion. For thisimage the calculated
“a/bratio,” defined as the maximum-to-minimum ratio of the
radii of the 50%-intensity contour, is 1.02, while the a/b ratio
of thefuel—pusher interfaceis1.06. Thereductionfrom 1.06 to
1.02 could be caused by geometric projection effects or by the
nonuniform temperature distribution within the fuel, with the
“corners’ of thetetrahedral-shaped core being colder and thus
not emitting as strongly.

Conclusions

Tetrahedral hohlraumshave been proposed asan alternative
approachtoignitioninindirect-drive | CF. Recent experiments
on the OMEGA laser have confirmed the predicted radiation
drive uniformity (0yy,s < 1%) incident on an imploding cap-
sule. To further understand these implosions, the view-factor
code BUTTERCUP has been expanded to includea3-D, time-

50% contour
alb=1.0

Yy

|
< 80 um

TC5125

Figure 82.58

A postprocessed simulation of the x-ray image of the imploded core corre-
spondingtoFig. 82.46(b), integrated over a200-pswindow around bang time.
Thea/bratio of major to minor axes (1.02) ismeasured from the 50% contour
of absolute x-ray intensity.
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dependent treatment of the radiation diffusion into the gold
wall andtheradiationtransportinthehohlraum. BUTTERCUP
model sthe hydrodynamicimplosion of thecapsuleby dividing
it into many triangular wedges of equal solid angle, each
undergoing a 1-D implosion driven by a different incident
radiation source. These individual calculations are coupled
together with 3-D thermal and radiation diffusion. Finally, an
X-ray postprocessor is used to simulate an image of the im-
ploded core.

Thewall-diffusion model predicts atime-dependent radia-
tion-drive temperature that agrees closely with experimental
measurements from Dante. Additionally, BUTTERCUP is
ableto calculateatime-dependent albedo, whichinturn can be
used in a simple energy-balance equation to estimate radia-
tion-drive temperatures. The hydrodynamic implosion cal cu-
lations have provided valuable insight into the physics of
indirect-drive | CF capsuleimplosions. Given thesimplicity of
the implosion model, predicted bang times as well as nuclear
fusionyieldsareinreasonableagreement withthoseseeninthe
experiments. Pseudo-3D calculations suggest that for high-
convergenceimplosions, onepotential cause of yield degrada-
tion isthe asymmetric shock convergence sincethe fuel isnot
heated as efficiently asin aperfectly spherical implosion. The
3-D x-ray postprocessor has shown that experimental images
of the imploded capsule underestimate the actual level of
core distortion.

These results show that, despite its relative simplicity,
BUTTERCUP has already provided some critical new under-
standing of the connection between theory and experiment in
hohlraum implosions. Finally, the pseudo-3D methods de-
scribed herewill likely beuseful for devel oping and testing the
more-sophisticated, fully three-dimensional codes that are
needed to provide detailed modeling of ignition hohlraumson
the NIF.
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