L aser Beam Smoothing Caused
by the Small-Spatial-Scale B-Integral

Introduction

Target irradiation uniformity is an important aspect of the
direct-drive approach to inertial confinement fusion (ICF),12
where the capsule is directly irradiated by a symmetrically
arranged cluster of high-intensity, ultraviolet (UV) |aser beams.
Nonuniformity in laser irradiation seeds the Rayleigh—Taylor
hydrodynamicinstability, which consequently degradestarget
performance.3# Various techniques are employed on the
OMEGA>|aser toimprovetheon-target irradiation uniformity
to reduce laser imprint: two-dimensional smoothing by spec-
tral dispersion (2-D SSD),%8 distributed phase plates
(DPP’s),%10 polarization smoothing (DPR’s),>1112 and mul-
tiple-beam overlap. A complete understanding of the laser
focal-spot dynamics is essential to ICF performance, and it
provides valuable feedback as a laser diagnostic tool. In
Ref. 13, the smoothing rate of 2-D SSD on OMEGA was
investigated both experimentally and numerically. Excellent
agreement between the experimental results and the corre-
sponding simulationswasfound for all 2-D SSD casesand for
low-energy shotswithout applied frequency modulation (FM)
(i.e., without SSD). Laser beam smoothing of high-power
glasslasers caused by small-spatial-scale and whol e-beam B-
integral effects with DPP'sand no applied FM isexamined in
thisarticle.

In the absence of externally applied FM, the beam can
acquire bandwidth because of the time-dependent B-integral
(Ref. 14, p. 385) acquired in the laser chain. The phase
difference between awave traveling in a vacuum and awave
propagating a distance L in a nonlinear medium in the z
direction can be expressed as

where Aq is the vacuum wavelength, ng is the linear index of
refraction, and B is the intensity dependent phase given by

L

= 2rr[yl(z)dz,
0

(pB(Z)_T
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where yis the nonlinear constant of the medium and 1(2) is
theintensity (compare Ref. 15). Inthe event that the B-integral
is nonuniform in space and time, it will cause the speckle
pattern produced by the DPP to move in the target plane,
similar to the effect of SSD. In the absence of a smoothing
mechanism such as SSD, the nonuniformity of the measured
far fieldswith DPP'sisexpected to have an rmsval ue of 100%,
reflecting the high contrast of the speckle pattern produced by
the presumed coherent illumination of the DPP. Experimental
far-field measurements, however, acquired on OMEGA with
theultraviol et-equival ent-target-plane (UV ETP) diagnostic of
high-energy shots without applied FM yielded smoothed far
fieldswith overall nonuniformity ranging from 62% to 88%.13
The nonuniformity decreases approximately linearly with in-
creasing averageintensity. Theamount of smoothing provided
by B-integral effects alone is not sufficient for direct-drive
ICF.” However, shots without applied FM are base-line mea-
surements for the high-intensity SSD shots and are therefore
studied in this article.

The dominant smoothing mechanism in pulses without
externally applied FM is attributed to the small-spatial-scale
B-integral variation, which possessessufficient temporal band-
width and beam divergenceto affect OM EGA target spherical-
harmonic modes as small as ¢ ~ 40 or wavelengths as long
8S Amode ~ 80 um (¢ modes are related to wavelength by
0=27T/Aoge Wherer =0.5mmisthetarget radius). Thesmall-
spatial-scale B-integral resultsfrom intensity nonuniformities
asthelaser beam propagatesthrough anonlinear medium, such
asamplifier glass, and produces amplitude and phase modul a-
tionsin the beam (see Ref. 14, p. 381). This effect introduces
time-dependent phase variations across the beam, which re-
sults in some smoothing of the speckle structure when the
beam, without externally applied FM, passes through a DPP
and is focused onto the target. The whole-beam B-integral
affects smoothing to a smaller degree and is produced as the
whole beam self-focuses (see Ref. 14, p. 380). The RAINBOW
code (compare Ref. 15, p. 229) calculates the whole-beam
B-integral for the pul se shapes used on OMEGA asafunction
of radius and time. It is shown later in the Laser Beam
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Smoothing section that the whole-beam B-integral produces
only asmall portion of the observed smoothing because of its
small temporal bandwidth coupled to the fact that itsimposed
laser divergence does not change substantially over time. Asa
result, the spatiotemporal evolution of the whole-beam B-
integral is not sufficient to cause rapid movement of the
speckle pattern in the far field. The whole-beam B-integral
changesthe on-target focal -spot diameter and shape by asmall
amount.

The transverse spatial-intensity profile of the near field
evolves slowly intime from a center-peaked beam to an edge-
peaked beam as aresult of gain saturation effects. The highest
far-field spatial frequenciesproduced by coherentillumination
of the DPP are caused by theinterference from the outer edges
of the beam. Consequently, as the effective beam radius in-
creases in time, the energy in the highest spatial frequencies
increases. The effective radius of the fluence accurately yields
the overall high-frequency cutoff.

ThecodeWaasikwa' * was devel oped to simul atethe planar,
time-integrated far fields produced by the OMEGA laser,
which allows a direct comparison of the calculations to the
images acquired by the UVETP diagnostic. Waasikwa' is a
general-purpose simulation program that has the capability to
model far fields under a variety of near-field conditions:
arbitrary spatial envelopes that possess an arbitrary temporal
envelope at any transverse point; whole-beam and small-
spatial-scale B-integral near-field phase; 2-D SSD; arbitrary
static phase aberrations; DPR’s; theinherent bandpass charac-
teristic of frequency conversion; and multiple-beam overlap.
Waasikwa’' utilizesthecontinuousDPPemployed on OMEGA.
Inaddition, it can beconfiguredto runwithinashared-memory
model as a multiprocessing task on aparallel machine such as
the SGI Origin 2000.16

Thefollowingsectionsdescribefar-fieldsimulationand analy-
gs, experimentd results, simulation results, and conclusions.

Far-Field Simulation and Analysis
Waasikwa' calculates the far-field fluence using

F(XfvKff)E L{Se Lee (e, yie ) i, (1)
dLFJ)raIion

* AnAnishinaabeword meaning “ polishesit” asinsmoothing arough surface.
Resource: J. Nicholsand E. Nyholm, eds. Ojibwewi-ikidowinan and Ojibwe
Word Resource Book, Occasional Publications in Minnesota Anthropol ogy,
No. 7 (Minnesota Archaelogical Society, St. Paul, MN, 1979).
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where Ig (X5, Vi, t) represents the instantaneous far-field
intensity. The evolution of the far-field intensity is calculated
by taking the modulus squared of a two-dimensional spatial
Fourier transform of the UV near field (compare Goodman,
Ref. 17, p. 83),

Lt (Xer e 1)

where E(x,y,t) representsthe complex-valued UV electricfield
strengthinthe near field and (x,y) and (X, Y¢r) arethenear- and
far-field coordinate systems, respectively; Ay, = 351 nmisthe
UV vacuumwavelength; and fo = 180 cmisthefocal length of
the OMEGA focusing lens. The spatiotemporal evolution of
the complex-valued UV electric field can be expressed as

E(xy,t) = Eg(x, y't)eirps(x.y,t) o ®re(xy) 3

where Eg(x,y,t) defines the electric field envelope of the
pulsed beam; @s(X,y,t) represents the combined phase contri-
butions of the whole-beam and small-spatial-scal e intensity-
dependent B-integral; and ¢hpp(X,y) is the static DPP phase-
plate contribution whose mapping to the far field depends on
itsdesign. During OM EGA laser shots, the near fieldsof the 1-
to 3-ns square pulses evolve from a center-peaked to an edge-
peaked spatial-intensity profile. The near field of a 100-ps
pulse, however, remains center peaked for the duration of the
pulse. The spatiotemporal evolutionsof both the Gaussian and
square pulses are calculated with RAINBOW and are used as
inputstotheWaasikwa' simulations. The equivalent near-field
radius and pulse width are useful for calculating the average
intensity and are defined as (see discussion of equivalent
widthsin Ref. 18, p. 148)

1 (o]
feg = F0) g Foe (r)dr (4)
and
o = — [ P(t)dt (5)
=B _Im ’
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respectively, where the near-field fluence is defined by
2
For (1) = [ | Eo(r,0)["ct,
Ot

the near-field power is defined by
P(t) = 2n | r|Eo(r.t) |2dr,
0

and the pulse centroid is given by

[ tP(t)dt
te="5——

[ P(t)dt .

—00

It has been assumed that, for these calculations, the beam
profile is azimuthally symmetric so that the spatial energy
centroid is always located at r = 0. The equivalent widths
permit acomparison of the shorter, 100-ps pulses (which have
a center-peaked beam profile and a Gaussian pulse shape) to
the longer pulses (which are, on the average, nearly squarein
space and time).

The 2-D power spectral density (2-D power spectrum or
simply the 2-D psd) is derived from either the measured or
simulated far-field fluences by taking the modulus squared of
the 2-D spatial Fourier transform, namely,

PSD (kxff ! kyff )

F (s, st )e_i (s e dxgrdyse| ,  (6)
Ofar field

where F(X, Ys) represents the far-field fluence as defined by
Eq. (1), (%, Vis) isthefar-field coordinatesystem, and (kxff Ky, )
is the far field's spatial-frequency coordinate system. The
azimuthal sum at each radial wave number of the 2-D power
spectrum defines the 1-D power spectral density (1-D power
spectrum or simply the 1-D psd) and is given by

psd (k) = §PSD (ko Ky, ) ir 6, (7)
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where the transformation into polar coordinatesis defined as

kit = \Kg, 2 +ky 2 and tan@=k, /k, . The single-beam

Yit Vs
irradiation nonuniformity o, isdefined asthe square root of

the ratio of the speckle power [e.g., the high frequencies
ks = 0.04 (rad/um) at the OMEGA target plane or ¢ modes
with ¢ = 20] tothe envel ope power of thefar-field spot [i.e., the
low frequencies ki < 0.04 (rad/um)]. The envelope/speckle
dividing-line wave number of 0.04 (rad/um) represents the
lowest spatial frequency that is smoothed by 2-D SSD, as
discussed in Ref. 13. A finite entrance pupil imposes alimita-
tion on the spatial-frequency bandwidth of an optical system
(comparetheintensity-impul seresponse or point-spread func-
tion of a diffraction-limited system with a circular exit-pupil
function in Ref. 17, p. 110). On OMEGA, the highest spatial
frequency of the laser speckle (or interference pattern) is
limited by the finite diameter of the serrated apodizer, regard-
lessof thebeam profile. The OM EGA entrance pupil isdefined
by the diameter of the serrated aperture, which islocated near
the end of the laser driver section on OMEGA. The entrance
pupil isimaged to the end of OMEGA and sets the final exit
pupil to afull-system diameter D = 27.5 cm. Consequently,
the power spectrum possesses an absol ute cutoff wave number
that corresponds to the f-number limited spatial frequency

2m D Crad O
kcutﬁ:— 2=

=224
1.22 )‘UV fQ Em%

and corresponds to Apoge,, = 280um.

Experimental constraintsrestrict the analysisto the central
portion of thelaser beam. Consequently, datawindowing must
be employed to accurately analyze the PSD of the data.
Otherwise, whenthe 2-D PSD iscal culated, theresult contains
Fourier artifacts of the cropping function convolved with the
desired underlying power spectrum of the far field. A 2-D
generalization of the common Hamming (the Hamming func-
tion does not go to zero like the similar Hanning function)®
windowing function is employed:

SQHamming (s , st )
= Hamming (¢ ) [Hamming (ys). (8)

Experimental Results

A full description of the CCD-based UVETP diagnostic
can befound in Ref. 13. An example of an acquired image of
a 300-J, 3.5-ns shot with no applied FM is presented in
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Fig. 82.34, where a lineout through the center of the beam is
overplotted to show the highly modulated intensity. The laser-
beam focus is centered nominally on the photodetector, and a
584-um central portion of the whole 950-um far-field spot
(defined as the 95% enclosed energy contour) iscaptured on a
1024 x 1024-pixel grid. However, experimental variances of
the far-field centroid reguire that the image be cropped to
guarantee a consistent areafor all shot data; a 720 x 720-pixel
portion around the far-field centroid yields a 411 x 411-um?
area of the original image for analysis.

Figure 82.34

UVETP sampled far-field spot demonstrating the 46x, high-magnification
setup. Theimagerepresentsa300-J, 3.5-nssquarelaser pul sewithout applied
FM. As demonstrated with the single-pixel lineout through the center of the
beam, the spot possesses ahighly modulated intensity profile. Thelaser beam
focus is centered nominally on the photodetector, and a 584-um central
portion of the whole 950-um far-field spot (defined as the 95% enclosed
energy contour) is captured on a 1024 x 1024-pixel grid.

Waasikwa' simulationsuseadifferent scalethat samplesthe
majority of the far-field spot to avoid aliasing effectsfrom the
Fourier transforms in Eq. (2). The far-field spot is calculated
over a 1024 x 1024-pixel grid that spans a 993 x 993-um?
area. The speckle structure is resolved by surrounding the
DPP data (defined as a 512 x 512-pixel grid covering 32.6
x 32.6-cm? area) with a zero buffer of 256 pixels on each
side, forming atotal near-field grid of 1024 x 1024 pixels. For
adirect comparison of power spectra, the simulated far fields
are cropped to match the area of the cropped UVETP images
o that they span 424 x 424 pixels or a 411 x 411-um? area.
Consequently, the power spectrum frequency spacing for ei-
ther the measurement or simulation is equivalent, i.e.,
dkg = 0.0153 (rad/um), because the total sampled area of the
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far field dictates the discrete Fourier domain spacing of the
power spectrum.

The aforementioned configurations are used for all of
the UVETP images and Waasikwa’ simulations presented in
this article. A 1-D power spectrum is calculated for each
measured UVETPimage and Waasikwa' simulation using the
square Hamming window. The analysis results for al of the
measured and simul ated far fields discussed here are compiled
in Table 82.1V.

The measured nonuniformity for the high- and low-energy
shots without applied FM decreases approximately linearly
with increasing average near-field intensity. This trend is
illustrated in Fig. 82.35, wherethe average near-field intensity
isgiven by

Ushot
oy [BLE, ®)

where Ug,: isthe measured shot energy, the equivalent radius
req Was defined in Eq. (4), and the equivalent pulse width
teq Was defined in Eq. (5). These values are tabulated in
Table 82.1V for different pulse widths and energies. When the
average near-field intensity is increased, both the small-spa-
tial-scale and whole-beam B-integrals grow (since the small-
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Figure 82.35

Thenonuniformity asafunction of averageintensity for low- and high-energy
versions of the pulse shapes. This figure illustrates the trend in the
nonuniformity of UVETP images as a function of various pulse shapes and
energies. The squares (m) represent the high-energy shots, and thecircles (e)
correspond to the low-energy counterparts. The points are labeled with the
OMEGA shot numbers. Note the suppressed zero.
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spatial-scale B-integral scales with the whole-beam B-inte-
gral), which in turn resultsin alower measured value of Oy
For example, the peak whole-beam B-integral calculated for
the 12.5-J, 100-ps Gaussian pulse increased from 4.64 rad to
9.99rad (see Table82.1V) when the energy of the 100-ps pulse
was increased by a factor of 3, and the measured o;,,g de-
creased from 83.4% to 62.3%.

Power spectraof measured UVETPimagesare overplotted
inFig. 82.36 for threetypes of OMEGA shotswithout applied
FM: alow-energy, 3-nssquare pulseisoverplotted withahigh-
energy, 100-ps Gaussian pulse in Fig. 82.36(a) and the same
low-energy pulseisoverplotted withahigh-energy, 1-nssquare
pulse in Fig. 82.36(b). These spectra represent the three dis-
tinct types measured for no-FM pulses. The low-energy, 3-ns
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Figure 82.36

The 1-D power spectrum of UVETPimagesfor (a) low-energy, 3-ns square (shot 16217; dashed line) and 100-ps Gaussian (shot 13736; solid black line) shots
and (b) low-energy, 3-nssquare (shot 16217; dashed line) and high-energy 1-nssquare (shot 15723; solid black line). Thelow-energy shot was5 Jand represents
the expected spectrum for shots without applied FM. The high-energy shots were 508 J and 40 J, respectively, and illustrate the smoothing effects of whole-
beam and small-spatial-scale B-integrals in the regions indicated where the spectral power has been reduced relative to the low-energy shot.

Table 82.1V: Far-field analysis results from typical UVETP images and the Waasikwa’ simulations that match the near-field conditions
for avariety of pulse shapes and energies. A square-Hamming window shape was used. The UVETP image was cropped to
span 720 x 720 pixels and covers 0.411 x 0.411 mm. The Waasikwa' simulation was cropped to match the area of
the UVETP image so that it spans 424 x 424 pixels. Note that this yields identical speckle-frequency spacing of
dkg = 0.0153 (rad/pum) for the measurement and simulation.

Nominal | Output- uv RAINBOW | RAINBOW RAINBOW | UVETP | Waasikwa’ Waasikwa'
Shot Pulse Pulse Beam | Caculated | Calculated Peak Whole- | Oy Orms Orms
Number Width Shape | Energy leq teq Beam (%) (%) (%)
@) (cm) (ns) B-Integral Whole-Beam | Whole-Beam and
(radians) B-Integral | Small-Spatial-Scale
B-Integrals
S12748 100ps | Gaussian | 125 7.76 0.126 4.64 83+0.5 96.3 94.1
S13736 100ps | Gaussian 40 853 0.116 9.99 62+3 86.2 67.0
S15723 1ns square 508 12.6 0.964 20.0 69+5 95.2 69.9
S13479 2ns square 370 124 1.86 111 87+3 9.4 86.5
S16217 3ns square 6.6 7.09 2.98 0.970 93+1 98.0 98.9
S13879 3ns square 331 124 2.880 7.58 88+1 97.7 88.6
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square shot without applied FM hasameasured nonuniformity
Orms = 93% near the 100% modulation expected for a DPP
without B-integral effects. The high-energy shots exhibit
nonuniformity values gy, from 62% to 88%. The 1-D power
spectra of the 100-ps Gaussian high-energy shot deviate from
the theoretical low-energy case over the spatial-frequency
range ki > 0.3(rad/um), as seen in Fig. 82.36(a), which
correspondsto ¢ > 150 and afull-angle near-field laser diver-
gence of about 12 urad. This pulse has insufficient time to
smooth lower spatial frequencies. Conversely, the 1-D power
spectra of the high-energy, 1-ns square shot deviates over a
larger spatial-frequency range ki > 0.08(rad/um) (¢ > 40), as
seen in Fig. 82.36(b), even though this pulse has a lower
averageintensity and higher nonuniformity. For both cases, the
deviation from the low-energy spectrum becomes significant,
i.e., aratio greater than about /2 for ki > 0.7 (rad/um)
(¢ > 350), which corresponds to a full-angle, near-field laser
divergence of about 4 urad. The other two high-energy square
pulses, given in Table 82.1V, exhibit power spectra character-
istics similar to the 1-ns case except that the power spectra
show less deviation from the low-energy spectrum.

A comparison of the power spectra for the experimental
measurements and the simulations demonstrates the smooth-
ing effect of the small-spatial-scale and whole-beam B-inte-
grals. The details of the B-integral modeling are given in the
Laser Beam Smoothing section. The power spectra of the
UVETPimagesareshowninFig. 82.37 through Fig. 82.40 (as
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solid gray lines) for the 100-ps, 1-ns, 2-ns, and 3-nspulseswith
no FM, respectively. The figures include the resultant 1-D
power spectrafrom corresponding Waasi kwa simul ations that
include only whole-beam B-integral and both small-spatial-
scale and whole-beam B-integral effects. Each power spec-
trum is normalized to the spectral energy of the 1-D power
spectrum. Themeasured g;,,sisthelowest for the 100-pspulse
at 62.3% and increases with increasing pulse length up to
88.4% for the 3-nspulse. Thevaluesof thenonuniformity Gy
for all the UVETPimagesare summarizedin Table 82.1V. The
UVETPdiagnostic was configured with a Gaussian-like DPP,
which isfabricated to produce afar-field spot withan N=2.5
super-Gaussian spatial-intensity envelope, for al of the shots
except the 3-ns pulse. A higher-order DPP, whichisfabricated
to produce a far-field spot with an N = 6.5 super-Gaussian
spatial-intensity envel ope, wasinstalled for the3-nspulse. The
spatial-intensity envelope of the far field determines the low-
wave-number power spectrum but doesnot significantly affect
the large-wave-number power spectrum. The datawindowing
occludes the low-wave-number power spectradifferences be-
tween the two DPP designs.

Simulations of the power spectra demonstrate that tempo-
rally varying local phase distortions in the beam caused by
small-spatial-scale and whole-beam B-integral effects in the
laser decrease the nonuniformity to levels that match the
experimental results in pulses with no applied FM. The theo-
retical predictions of the models that include both of the
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Figure 82.37 Figure 82.38

The 1-D power spectrum of aUV ETPimage of a100-ps Gaussian pulse (shot
13736; solid gray line) and the corresponding Waasikwa' simulation includ-
ing only whole-beam B-integral effects (dashed line) and both small-spatial-
scale and whole-beam B-integral effects (solid black line).

The 1-D power spectrum of a UVETP image of a 1-ns square pulse (shot
15723; solid gray line) and the corresponding Waasikwa' simulation includ-
ing only whole-beam B-integral effects (dashed line) and both small-spatial-
scale and whole-beam B-integral effects (solid black line).
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B-integral effectsareinexcellent agreement with themeasured
power spectra for the 1-ns, 2-ns, and 3-ns square pulses over
the range of ki > 0.1 rad/um. Thereisaslight discrepancy for
the combined B-integral model due to excess smoothing over
the range of 0.1 < ki < 0.3 rad/um. The 100-ps Gaussian
simulations are limited by the near-field measurements as
described in the next section. The impact of the small-spatial-
scale B-integral effects (solid black ling) on the power spec-
trum is evident in Figs. 82.37-82.40, where the simulations
(dashed line) that model thewhol e-beam B-integral effectsbut
neglect the small-spatial-scale B-integral effects are shown.
The effects of the whole-beam B-integral reduce the g;,sto a
level of 86.2% and 95.2% for the 100-psand 1-ns high-energy
pulses, respectively, which does not match the experimental
resultswith oy, = 62% for the 100-ps pulse and 0y, = 69.3%
for the 1-nspul se. Thecombined effectsof thewhol e-beamand
small-spatial-scale B-integrals, however, reduce the 0,5 t0 @
level of 67.0% and 69.9% for the 100-psand 1-ns high-energy
pul ses, respectively, which is comparable to the experimental
values. The values of the nonuniformity o, for all the
Waasikwa' simulations are summarized in Table 82.1V.

Laser Beam Smoothing
Smoothing in the far field occurs when the state of the

statisticsof the DPP. If the state of ¢(x,y,t) changesintimeover
aninterval 1= ty—t; (where tisof the order of the coherence
time for the pulse) such that a change in state A@(X,y,1)
= @(xY,b)—@(xy,t1) is nonconstant over the near field, the
instantaneousfar-field specklepatternwill change, resultingin
time-integrated smoothing. Alternately, if thequantity Ag(x,y, 1)
is constant over the near field, during the time interval 7, then
no changein the far-field speckle pattern occurs regardl ess of
how rapidly the state ¢(x,y,t) varies in space or time. For
example, anondispersed phase-modul ated pul se can berepre-

sented by @(x,y,t) = @ (xy) + @(t).

Time-integrated smoothing in the far field can be under-
stood as a movement of the speckle structure or as a distinct
change of the speckle structure as a function of time. If the
change in state A@(x,y,7) hasalinear form, i.e.,

Ag(x,y, 1) = x(d¢/0x) + y(0 ¢y),

then the speckle pattern will appear to laterally shift in the far
field by the amounts given by Axg = fo(d@/dx) and
Ayyr = fo(d¢/ay). In the more general case, the phase-state
@x,y,t) can be Fourier decomposed into a set of modes as

i i _ 1 ~ +i (kX +k,

transverse phase _front qf the near field, given by (p(x,y,t_), Ax.y,t)= — qo(kx,ky,t)e ( yY)dedky' (10)

changesasafunction of time such that the spatial coherenceis L spetial

altered. For a particular instant in time, a state @(x,y,t) will frequencies

produce a unique speckle pattern in accordance with the
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Figure 82.39 Figure 82.40

The 1-D power spectrum of a UVETP image of a 2-ns square pulse (shot
13479; solid gray line) and the corresponding Waasikwa' simulation includ-
ing only whole-beam B-integral effects (dashed line) and both small-spatial-
scale and whole-beam B-integral effects (solid black line).

The 1-D power spectrum of a UVETP image of a 3-ns square pulse (shot
13879; solid gray line) and the corresponding Waasikwa' simulation includ-
ing only whole-beam B-integral effects (dashed line) and both small-spatial-
scale and whole-beam B-integral effects (solid black line).
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where qND(kX, ky,t) represents the complex spectral amplitudes
of the Fourier Kernel e*(5**%Y) At each instant in time
@(x, y,t) OR, whichimpliesthat theintegral in Eqg. (10) may be
reduced to two timesthereal part of theintegral over the upper
half-plane that excludes the negative axis owing to the sym-
metry properties of the Fourier transform of real functions
[i.e., the transform is Hermitian g?)(kx,ky,t) = ¢ (~ky, ~kyut)
(Ref. 18, p. 14)].

The smoothing effectiveness of an evolving phase state
@(x,y,t) can be understood by examining the contribution of the
term €¥@XY) to the far-field distribution. The instantaneous
far-field speckle patterniscalculated by Eq. (2). The convolu-
tion theorem dictates that the result can be written as

2
Iff(xffyyffyt):|EDPP(Xffyyffyt)* Ego(xffyyff:t)| ., (11)

where the quantity Eppp (X, Vi, t) represents the complex
field of the speckle pattern caused by the combined effect of
the current beam cross section and the DPP; the quantity
E X, Ytr, t) represents the instantaneous complex far-field
pattern caused by the phase state ¢(x,y,t); and the symbol *
denotes the convolution operation. The extent of the far-field
pattern E X, Vi, t) determines the wavelengths that can be
smoothed: the greater the area covered, the longer the wave-
lengths that the phase state @(x,y,t) can smooth. The far-field
pattern E X, fr, t) must changeover timeto affect smoothing.
Further, the pulse must be long enough to cover many coher-
ence times: the longer the wavelength, the more smoothing
time required.

o(x.y.1)
=2/ ke Ky t)| sin(xr{ Zp(kx,ky,t)} e +kyy), (12)

where the term | ¢ ky,ky,t) | represents the magnitude of the
Fourier component andtheterm 4{(p(kx, ky,t regresentsthe
phase[wheretheoperator xr{e'g} =0].Theterm ‘ qo(kx, ky,t)‘
determines the amount of laser divergence, given approxi-
mately by

I\ DZ“ Zp(kx,ky,t)‘+q JkZ k2.

If the quantit ‘(Z(kx,ky,t)‘ = &y, where &, is constant and
x,{(p(kx,ky,t = wht, then Eq. (12) isfunctionally identical
to 1-D SSD.?0 In this scenario, the spectral components of
EdXt, Yer.t) in the far field have fixed amplitudes and a fixed
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spacing (given by the well-known Bessel function expansion;
see Ref. 20) but avarying relative phase. If the magnitude of
the phase varies in time as ‘(Z(kx,ky,t)‘ = gp(t) and if the
phase term 4{(p(kx, ky,t)} is constant, the spectral compo-
nents of EgXt, Ysr, t) in the far field have a fixed spacing
analogous to the SSD-like case but with a varying amplitude
and afixed relative phase. As the magnitude J,(t) increases,
the number of the spectral components increases and spreads
outintothefar field (thissituationisdirectly anal ogousto what
happens when the whole-beam B-integral modifies the phase
magnitudewherethe Fourier component’ swavelengthistwice
the beam diameter). A general case is constructed when both
the magnitude and phasetermsin Eq. (12) are allowed to vary
withtime. A stochastic model may also be employed wherethe
magnitude and rel ative phaseterms changein time of theorder
of the coherence time and obey a probability density function.

If more than one spectral mode is considered, a variety of
complex smoothing mechanisms can be constructed. How-
ever, an arbitrary phase state that alters the spatial coherence
over timeand, in addition, is consistent with the observations
cannot be selected. When considering a small number of
Fourier components, the member with the greatest laser diver-
gence can be assumed to dominate the remaining members
since its laser divergence will be the strongest (see Ref. 21,
p. 241 regarding transmission bandwidth). Otherwise, thetotal
divergence of each member must be considered in terms of
their combined effect asthey convolvetogether inthefar field
and produce agreater spread and smooth longer wavelengths.
To this end, the dominant mode will contribute a full-angle
divergenceof AQ 02[ (1) +1] k2 +k2Z andatemporal band-
width Ac O[ 8n(t) +1] gy, and the other modes will contrib-
ute significantly only if their respective spatial or temporal
bandwi dths are comparabl e to the dominant mode. The maxi-
mum far-field wavelength that can be smoothed is given by
Snax = fofAB. The situation is analogous to the small-spatial-
scale B-integral when the Fourier components have a fixed
phaserelationship (i.e., they do not move acrossthe near field)
andthemodul ation depth (of each spectral component) changes
as the pulse evolves.

1. Whole-Beam B-Integral Modeling

The electric field and phase calculated by RAINBOW for a
pulsed beam are in cylindrical coordinates, viz. (r,t). Con-
versely, Waasikwa' models both transverse dimensions and
timein rectangular cartesian coordinates, viz. (,y,t). Accord-
ingly, atwo-dimensional spline fit is performed at each time
step to resample RAINBOW data into cartesian coordinates.
The complex-valued electric field with no applied FM or DPP
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that describes the UV near field is expressed in terms of the
converted RAINBOW data as

E(xy,t)=Ep, (%, y,t)ei(psfb(x’y’t). (13)

The phase term ¢, (xy,t) calculated by RAINBOW
represents the whole-beam B-integral that is an intensity-
dependent phase accumulated during propagation within a
nonlinear medium.

The phase state calculated by RAINBOW is roughly sepa-
rable, i.e., @g (xyt)03%, (1) @, (xy). The quantity
@s, (x,y) represents the initial beam shape that is injected
into the laser chain, and theterm Jg, (t) representstheinitial
pulse shape. This occurs because of self-phase modulation in
thelaser chainthat ismore severeinthefirst amplifierswhere
the local intensity is higher and prior to significant gain
saturation that causestheintensity beam profileto changeover
time. In other words, even though the intensity envelope is
altered after the whole laser chain, the phase modulation
retains a shape very similar to that of the injected beam. (The
form of the phase state is analogous to that discussed in the
previous section, where the spatial portion of amodeis fixed
and the modulation depth changes over time.) Therefore, the
laser divergence causesthefar field to expand as afunction of
time. This effect for a 100-ps Gaussian pulseisillustrated in

04 T T T T T T T
0.3 -
2 L 4
= Center
g 0.2 of puse ]|
= L 4
01r -
0 0 1 | 1 | 1 | 1
'—20 -10 0 10 20
Half-angle laser divergence (urad)
TC5345
Figure 82.41

The calculated laser divergence due to the whole-beam B-integral as a
function of time for a40-J, 100-ps Gaussian pulse.
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Fig. 82.41, where the laser divergenceis plotted against time.
Based onthecal culated | aser divergence onewoul d expect that
thewhole-beam B-integral would smooth downtothefar-field
spatial frequency,

2 _ 35t

fQAB Hm

ki =

from the cal culated full-angle divergence of AG= 10 urad (see
Fig.82.41). AsshownintheExperimental Resultssectionthe
nonuniformity cal culated with thismodel, however, fallsshort
of the measured smoothing. Additionally, the power spectrum
(dashedlineinFig. 82.37) isalmostidentical tothelow-energy
pulse (dashed linein Fig. 82.36). The primary reason is that
although there is sufficient laser divergence, the temporal
bandwidth for this method is insufficient to produce a short
coherence time because the peak B-integral is limited. This
model also fails to predict the measured nonuniformity and
power spectrafor the square pulses for the same reasons.

2. Modeling of Small-Spatial-Scale and Whole-Beam

B-Integrals

Near-fieldimagesof high-energy shotswereobtainedinthe
UV section of the OMEGA system (measured after the final
amplifiers and after the FCC's). Two pulse lengths—a 100-ps
Gaussian [Fig. 82.42(a)] and a 1-ns square [Fig. 82.42(b)]—
were captured to compare the fluence of the early timesto that
at later times. The 100-ps Gaussian near field was representa-
tive of acenter-peaked beam; the 1-ns square pulse wasrepre-
sentative of an edge-peaked beam. These images revealed
evidence of small-gpatial-scale intensity ripple across the
beam, which was more severe for the shorter pulse than the
longer pul se because of gain-saturation effects. This evidence
has led to speculation that the small-spatial-scale B-integral
caused the observed smoothing; the depth of thefluenceripple
corresponds to the laser divergence required to affect the
smoothingintherangek > 0.1 (rad/pm), and thegrowth of the
ripple provides the required temporal bandwidth.

The small-spatial-scale and whole-beam B-integral phases
both result from self-phase modulation, which is proportional
tothelocal accumulated intensity of the beam asit propagates
through a nonlinear medium. The combined phase effects of
the small-spatial-scale and whole-beam B-integrals can be
inferred from the fluence measured by the near-field images.
Thetimeevolution of the small-spatial-scale B-integral canbe
approximated to follow the spatiotemporal evolution of the
whole-beam B-integral that iscal culated by RAINBOW. Thisis
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only valid, however, over asmall energy rangeneighboringthe
measured near field because the ripple across the beam be-
comes less pronounced as saturation becomes important. For
long, high-energy (fluence) pulses, the beam experiences sig-
nificant gain saturation in the system amplifiers. The beam
profile is smoothed at later times in the pulse because the
amount of gain saturation at any spatial locationinthebeamis
proportional to the beam’s fluence at that location; initially
“hotter” regions of the beam experience reduced gain. This
effect is modeled by temporally blending different measured
near fields.

y near field (cm)
o
o
|

00+

y near field (cm)

01+

0.1 0.0 0.1

x near field (cm)
TC5346

Figure 82.42

Two near-field fluence measurements, taken after the FCC's, represent the
early- andlate-timeevol ution of along pulse. (a) Thefirstimage (shot 14233)
isa100-ps Gaussian pul se representative of the early-time evolution. (b) The
second image (shot 14234) is a 1-ns square pulse representative of the late-
time evolution.
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A model of combined B-integral effects is constructed by
perturbing both the intensity and phase calculated by RAIN-
BOW simulations. The electric field of the near field is ex-
pressed as [compare Eq. (3)]

Esim(x1 y,t) = Eosim (x, y,t) eiqoﬁsim (xy.) , (14)

where the perturbed magnitude of the electric field is defined
by

Eog,, (X ¥t) = o, (X V)T (x.), (15)

and the perturbed phase contribution dueto both small-spatial -
scale and whole-beam B-integral effectsis given by

(p&jm(x, yt)= @, (%Y, t)F (%, y). (16)

The unperturbed magnitude and phase of the electric field
calculated by RAINBOWSsimulationsaregivenin Egs. (15) and
(16) by Eg, (x,y:t) and @, (x,y,t), respectively. The pertur-
bation function I" (x,y) representsthe scaled ratio of aUV near-
field fluence measurement to the fluence calculated from a
RAINBOW simulation, namely

Fuvnt (X' y) (17)

")=a Fio(xy)

where the subscript UVnf indicates the UV near-field mea-
surement, the subscript rb indicatesthe RAINBOW simulation,
and a isthe proportionality constant and is defined by

Wb
Wovn

a (18)

where W, is the RAINBOW simulation energy and Wy is
the UV near-field energy.

The two UV near-field measurements are blended tempo-
rally to construct amodel for longer, higher-energy pulses. The
UV near-field measurements are used to divide the longer
pulseinto segments based on the energy within each measured
UV near field. The techniques described previously are em-
ployed to evaluate the perturbation function within each tem-
poral segment. The blending function is defined as a dimen-
sionless and smooth step function:
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b(Ton. Toff 1)

E%{tanh[r(t ~ton)] ~tanh[r(t-ro)} . (19)

where 15, and 1 are the turn-on and turn-off timesand r is
the rate at which the blending function mixes the UV near
fields. The dividing time of the segmentsis defined when the
RAINBOW simulation has equivalent energy to a UV near-
field measurement:

Wovet, = [ Tm(xyit)dxdyc, (20)
0

near
field

where the subscript n refers to a particular near field, e.g.,
n=1for thefirst UV near field. The times 1, define the turn-
on and turn-off times for the blending function; one blending
function turns off as the next one turns on, e.g., the first
blending function isb(—eo, 74,r,t) and the second isb(14,75,r ,t).
Thefinal blending function mixesinto unperturbed RAINBOW
data with b(7,,00,r,t). Energy conservation requires that

3

> b(ronn,roffn,r,t) =1 [t (22)
n=1

The time difference between 7, and 7, will change according
to the modeled pulse. Asthedifferential At = 1,—1; decreases,
the mixing rate r increases, which effectively describes how
the small-spatial-scal e perturbations changemorerapidly. The
decreased At occurs physically because the saturation fluence
is reached earlier for the higher-intensity pulses. The mixing

rateisadjusted to eliminate any step that may beintroduced in
the nonuniformity as a function of time. The switching times
and mixing rates for the different modeled pulsesare givenin
Table 82.V.

Thecalculated laser divergencefor thismodel asafunction
of timeisillustratedin Fig. 82.43for al-nssquarepulseat full-
system energy. This modeling scheme works well for the
longer square pulses but does not adequately describe the
smoothing observed for the shorter, 100-ps pulses. This is
attributed to the fact that the early time evol ution of the small-
scale B-integral isnot captured on either measured near field,
and consequently, only asingle UV near field is used.

| | | | | | |
10 N

08

06 N

Time (ns)

04r N

02 1
A1)

0.0 . ! ! ! ! ! !
-60 40 -20 0 20 40 60

Half-angle laser divergence (urad)
TC5347

Figure 82.43

The calculated laser divergence due to the whole-beam and small-
spatial-scale B-integrals as a function of time for a 1-ns sguare pulse at full
system energy.

Table82.V: Summary of the model parameters for 1-ns, 2-ns, and 3-ns square pul ses.
The parameters 71 and 7, define when the RAINBOW simulation has
energy equivalent to the first and second UV near field, respectively. The
energy of the first UV near field is 100 J; the energy of the second UV

near field is290 J.
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Shot Nominal Measured I [§) r
Number Pulse Width Energy for 100J | for290J | (Uns)
(ns) Q) () (ns)
S15723 1 508 0.225 0.555 192
S13479 2 370 0.645 157 112
$13879 3 331 118 2.99 0.775
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Conclusion

The observed smoothing on high-energy OMEGA shots
without applied FM has been successfully modeled using a
combination of small-spatial-scaleand whole-beam B-integral
effects. The smoothing affects mainly the spatial wave num-
bers ki > 0.1(rad/um) and can reduce the nonuniformity to
levels of 62%. The nonuniformity decreases approximately
linearly with increasing average intensity of the pulsed beam.
Theamount of smoothing dueto small-spatial-scale B-integral
effectsisinsufficient for direct-drive | CF. Reference 13 shows
that smoothing by spectral dispersion overwhelms this effect
in the mid-range spatia frequencies where these modes are
considered the most dangerous spatial frequencies for ICF
implosions.” Hence, it is not expected that the B-integral
effects mitigate hydrodynamic instabilities due to their
minor influence.
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