Stability of Self-Focused Filamentsin Laser-Produced Plasmas

Thefilamentation instability causeslocal intensity maximain
alaser beam propagating through aplasmato self-focusto high
intensities. This process can affect many aspects of the beam
propagation and absorption, so it has long been a subject of
interest in laser—plasma interaction research. The theoretical
thresholds and growth rates for the linear phase of the
filamentation instability are readily determined analytically.
As the instability develops beyond the linear phase and the
filament becomes smaller and more intense, the self-focusing
effect is counterbalanced by diffraction. This leads to the
possibility of a nonlinear inhomogeneous equilibrium—a
steady-state, high-intensity, low-density filament in which the
plasma pressure outside is balanced by the ponderomotive
forceof thelight inside. Thisnonlinear phase of theinstability,
which produces the highest intensities and is therefore of the
greatest practical interest, is difficult to treat analytically
because of the strong density and intensity inhomogeneities
associated with such a filament. The nonlinear stage of
filamentation is usually studied using simulation codes that
directly integrate the equations of motion for the fields and
particles or fluids.2 One important problem that is difficult to
study inthisway, however, concernsthelong-term stability of
the nonlinearly saturated filament, once formed. A stable
filament would have a greater influence on absorption
nonuniformity and on beam bending3—important consider-
ations for direct- and indirect-drive laser-fusion schemes,
respectively. It would also be expected to make a greater
contribution to parametric instabilities.* An investigation of
thestahility of afilament through simulationwould requirethe
simulation to cover alarge spatial extent of plasmaover along
period of time. At present, due to computational limitations,’
such extensive simulations necessitate some approximations
in the equations used to describe thefilament, in particul ar the
paraxial approximation to the wave equation for the light
propagation. Thisapproximation requiresthat the propagating
light not develop wave-vector components that deviate far
fromtheinitial direction of thebeam. Recent studies®indicate,
however, that the filaments most likely to be stable are very
intense and have very small radii, of the order of the light
wavelength, so that the paraxial approximation is question-
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able. Moreover, asimulation can treat only one specific set of
irradiation and plasma parameters at atime, and extrapolating
from simulations based on a limited sampling of parameter
space to general results on stability is problematic.

A purely analytic approach to filament stability requires
many approximations and idealizations to render the problem
at all tractable; for this reason applying the few results that
have been obtained analytically to realistic filamentsis diffi-
cult. Theseresults do suggest, however, that filaments may be
unstable to kinking or bending perturbations® and to necking
or “sausage’ perturbations,10 with the latter having a faster
growth rate.

In this article the stability problem of a redlistic filament
will be addressed for the first time using a semi-analytic
approach. A dispersion relation is obtained that describes the
linear growth of a sausage-type perturbation of a self-consis-
tent, self-focused cylindrical filament in equilibrium. This
dispersion relation is analogous to the simple polynomial
dispersion relations obtained for the instabilities of a plane
electromagnetic wave in a homogeneous plasma.ll Rather
than being a polynomial in the perturbation wave number and
frequency asin the homogeneous case, however, the filament
dispersion relation depends on these quantities through ordi-
nary differential equationsthat must be solved numerically for
each value of the frequency and wave number. This is still
much easi er than the simultaneous sol ution of several coupled
partial differential equationsasrequired by asimulation, yet it
allows the consideration of a physically realistic filament
equilibrium, arbitrarily long space and timeintervals, and the
use of thefull wave equation to describe the light propagation.

We will show that filament stability depends crucially on
filament size. First, consider the case where the filament is
small enough that only one waveguide mode will propagate.
The pump (laser) light propagates through the filament in this
fundamental mode at frequency wy and axial wave number k.
Amplitude modulation (sausaging) results from adding a per-
turbing light wave in the same mode at a differing frequency
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wy + Awand wave number kg + Ak, Acwand Ak being related
by the dispersion relation for the waveguide mode. This
intensity modulationitself hasfrequency Awand wave number
Ak and tends to move aong the filament at the waveguide
group velocity Aw/Ak, whichin general iscomparableto the
speed of light. Because the speed of the perturbation greatly
exceedstheion-sound speed, the perturbationinteractsweakly
with the surrounding plasma, limiting potential growth rates.
A much stronger interaction can be expected if thefilament is
large enough to alow two or more waveguide modes to
propagate. In this case the perturbing light can bein a second
mode with a different dispersion relation. Thus, it can have a
frequency w; O ay but a significantly smaller axial wave
number k; < kg, sothat Aw/Ak = (Oub - ai)/(ko - kl) ismuch
smaller than the speed of light and can be comparable to the
ion-sound speed, leading to an enhanced interaction.

To explore these ideas quantitatively, we consider an equi-
librium filament consisting of alow-density cylindrical chan-
nel in ahigher-density homogeneous background plasma. The
channel is formed by the ponderomotive pressure of light
propagating within the channel in the fundamental waveguide
mode. Assume that in equilibrium the axis of the filament lies
in the z direction and the filament intensity and density vary
only asafunction of r. Write the electric field Eg of the pump
wave as

Eq(r,2,t) = wo(r)e (ko2 @et) 4 cc, (1)
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so that ¢y represents the oscillatory velocity v = eEp,a/Moy
normalized to vy, the electron thermal velocity. The pump
satisfies the wave equation in cylindrical geometry
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with boundary conditions gg(r) - 0asr — oo, (dyg/dr), = ¢
= 0 for a bound-state waveguide mode propagating in a
cylindrical filament. The sguare of the plasma frequency
wgo(r) is proportional to the density, which is determined by
pressure balance with the ponderomotive force of the pump:
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whereNgisthe background density outsidethefilament and n.
is the critical density. Equations (2) and (3) give a nonlinear
differential equation for Y, which together with the boundary
conditions results in an eigenvalue problem determining Ko,
Yo, and the filament density profile ng(r). The pump propa-
gatesinthefundamental mode; however, if thefilamentisdeep
and wide enough, higher-order waveguide modes will also
propagate in it. These eigenmodes satisfy the equation

O0d2 1d O

where j = 0 represents the fundamental mode, s = ayr/c, and
the eigenvalue I'; determines the relation between the axial
wave number ki of the eigenmode and its frequency
w;j: c?k? [« - «f / o =Tj. In general, the spectrum of
eigenvalues I'; will contain discrete values for bound modes
with I'; =Ng/n¢ and a continuum of unbound modes with
i —No/nc. Since we are interested in instability, we will
be primarily concerned with the bound modes; the unbound
modes propagate away from the filament before they have an
opportunity to grow significantly. The eigenfunctions are
orthogonal and assumed normalized to unity. The pump is
assumed proportional to the fundamental eigenmode:
Wo(s) = ap@o(s), where ap may be taken real and represents
the pump amplitude.

We employ fluid equationsfor the plasmadensity; lineariz-
ing n around the equilibrium density profile ng(r) resultsin an
inhomogeneousdrivenwaveequation for thedensity perturba-
tion ny(r,zt):

P Ong BDno) 02ny 2 H
d[ C éj ni_ 0 nf_ E no nO qug
- _é[nomw 0 o) IFy]. (5)

where c5istheion acoustic speed, Z and M are theion charge
and mass, respectively, and F, is the ponderomotive force
resulting from the electromagnetic waves.

The density perturbation n4 is assumed to have real wave
number kinthe zdirection (along the filament) and frequency
w,whichmay becomplex: my(r,zt) = n(r)e' (k=) 4 c.c. The
interaction of thedensity perturbationwith thepump generates
a perturbed electromagnetic wave:
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where, since the frequency «w may be much smaller than w,

both upshifted and downshifted termsare kept. Thelinearized
wave equation then becomes
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Thefirst-order ponderomotiveforceresulting fromthebeating
of the pump and perturbed electromagnetic wavesis

Fp = -mv20(y?),
= -m2 {[w6(9) w+ (9) + wio(s) w-(9)
x gilk¢-ar) 4 c.c.} . @)

In Egs. (6) and (7) we have introduced the dimensionless
quantities Q = wc/ wyCs, K = tk/C, ¢ = wpz/c, and T = cupt/c.
Substituting Eq. (7) into Eq. (5), we obtain an equation for the
perturbed density in terms of the perturbed electromagnetic
fields:
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It isuseful to expand the electromagnetic fieldsin terms of the
orthonormal eigenfunctions ¢(s) of Eq. (4):

Defining );(s) as the solution of

Ud2 [0 1 dngOd 1 pdngf
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satisfying the boundary conditions 7 (0)=0 and outgoing
wavesass — oo, weseefrom Eqg. (8) that the density perturba-
tion can be written as

") < a5 (B5 +B7 )i (9) (10

Ne i

Combining Egs. (6) and (10) then givesalinear relationamong
the coefficients S;:

= a3y ([gj“—: + ;)L”,, (11)
J

where the L;; denote the integrals over the wave functions:
Lii = [o @ (915 (8) @ (s)sds.

Whilethe sumsin Eqg. (11) extend over an infinite range of
j, only thefinite number of discrete bound statesare of interest
in studying instabilities, and in small filaments only a few of
these may exist. Truncating the sumsin Eqg. (11) to the bound
states leads to afinite set of linear homogeneous equationsin
the B;—r , and setting the determinant of the coefficientsto zero
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givesadispersion relation relating Q and k. Unlike the homo-
geneouscase, however, thisdispersionrelationisnot apolyno-
mial but a more complicated function of Q and k, since the
coefficients L;;» depend on Q and « through the solutions of
the differential equation (9). These solutions are readily ob-
tained numerically, however, allowing the evaluation of the
dispersionrelation and thedetermination of theunstablemodes
of the filament and their growth rates.

As an example, consider a background plasma with a
uniform density of half-critical, Ng/n; = 0.5, and an ion sound
speed of ¢ = 1073 ¢, corresponding to an el ectron temperature
of approximately 1 keV. For a given central field amplitude
Yo(0), thefilament density and intensity profiles are found by
integrating Egs. (2) and (3), adjusting the axial wave number
kg sothat theboundary conditionsaresatisfied. Thewaveguide
modes are then found from Eq. (4). At this density and tem-
perature a central intensity of /(0) =vg/vr =7 isfound to
be sufficient to produce a filament wide enough to alow
two electromagnetic modes to propagate. The resulting pump
field amplitude and filament density profile are shown in
Fig. 80.3(a), and the two normalized waveguide modes are
shown in Fig. 80.3(b).
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Figure 80.3

(a) Self-consistent equilibrium field and density profiles for afilament with
background plasmadensity ng/nc = 0.5 and central intensity vo/vt =7; (b) the
two normalized bound eigenmodes for this filament.

The temporal growth rates and real frequencies for pertur-
bations having the form of the fundamental eigenmode are
showninFigs. 80.4(a) and 80.4(b), plotted against the normal -
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ized axial wave number k. The group velocity of the perturba-
tion normalized to the sound speed can be obtained from the
slope of the real frequency curve in Fig. 80.4(b) and, as
expected, is near the speed of light: vg/cs 1900 (recall c/cg
= 1000 in this example). Thus, a perturbation will propagate
along the filament at nearly the speed of light as it grows,
leading to a spatial growth rate that can be estimated by
dividing the temporal growth rates in Fig. 80.3(a) by vg/cs
(0 900. This spatial growth rate is quite small, of order
104 ay/c. For atypical laser-fusion experiment wavel ength of
0.351 um, for example, asmall perturbationtoafilament could
propagatefor several thousand micronsbefore becoming large
enough to disrupt the filament. Laser-produced plasmas of
interest are generally much smaller than this, so that small
filaments (radius < one wavelength) are effectively stable to
perturbations of this form.
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Figure 80.4
Growth rates (a) and real frequencies (b) for perturbationsin the form of the
fundamental eigenmode (solid line) in Fig. 80.3(b).

Thesituationismoreinteresting for filamentslarge enough
that two or more waveguide modes will propagate. Fig-
ures 80.5(a) and 80.5(b) show the tempora growth rate and
real frequency for the perturbation correspondingtothe second
waveguide mode for the same filament parameters as in
Fig. 80.4. Notethat the growth rateisnow considerably larger,
but more significant is the fact that the axial wave number of
theperturbation (given by thedifferenceinthetwowaveguide-
mode wave numbers) is much larger than in the single-mode
case. This makes the group velocity [Fig. 80.5(c)] at which
the perturbation propagates much smaller, and the resulting
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spatial growth rate much larger. This effect is due to the fact
that having two different dispersion relations for the interact-
ing modes allows larger values of Ak for a given Aw. More
importantly, however, the fact that the group velocity in
Fig. 80.5(c) passes through zero suggests the possibility of an
absolute instability, which grows without propagation. If we
define ko to bethevalueof k for which thetemporal growth
ratein Fig. 80.5(a) isamaximum, and Q max, Qmax: Qmax t0
bethe corresponding frequency anditsfirst and second deriva-

tives with respect to k, the condition for absolute instability
iol2
is

010

Im(©2ne) > 5 (O I3

Evaluation of these quantities showsthat this conditioniswell
satisfied (theleft sideinthisexampleis0.164, and theright is
0.047), so that the instahility is indeed absolute. This means
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Figure 80.5
Growth rates (a), real frequencies (b), and group velocities (c) for perturba-
tions in the form of the second eigenmode (dashed line) in Fig. 80.3(b).
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that the perturbation will remain in place as it grows, rather
than propagating along thefilament. Unless saturated by some
nonlinear mechanism, suchaninstability would be expected to
quickly disrupt the filament.

When the filament is large enough that many modes will
propagate, one approaches a “classical” regime where the
propagating light may be treated by the paraxial approxi-
mation or ray tracing. From the above analysisit is expected
that such filaments would be unstable, which seemsto be the
case in simulations.”8

The above stability analysis has been concerned with a
sausage-type perturbation, i.e., one with no azimuthal varia-
tioninthecylindrical coordinates centered on the equilibrium
filament. “Kink-type” modes, with nonvanishing azimuthal
wave numbers, could betreated using astraightforward exten-
sion of the above analysis. Such modes would, of course,
require a filament large enough to carry these higher-order
modes, so small single-mode filaments would be unaffected.
Larger filaments could be unstable to both kink and sausage
perturbations; which one dominatesin practiceisasubject for
further research. Another topic requiring further study is the
effect of plasmainhomogeneity, though by anal ogy with other
wave—plasmainteractions, inhomogeneity might be expected
to reduce instability growth rates.

In conclusion, thefirst analysisof filament stability usinga
realistic self-consistent filament equilibrium and awave-equa-
tion treatment of light propagation has been carried out using
a semi-analytic approach. It isfound that small filaments that
carry light in only one waveguide mode have only a weak
convective instability and, in most cases of interest in laser—
plasma interactions, may be regarded as essentially stable.
Filamentslargeenoughto carry two or morewaveguide modes
areunstableto sausage-type perturbations, which can be abso-
lutely unstable and may lead in typical cases to distortion or
breakup of the filament within a few tens of microns.
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