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The filamentation instability causes local intensity maxima in
a laser beam propagating through a plasma to self-focus to high
intensities. This process can affect many aspects of the beam
propagation and absorption, so it has long been a subject of
interest in laser–plasma interaction research. The theoretical
thresholds and growth rates for the linear phase of the
filamentation instability are readily determined analytically.1

As the instability develops beyond the linear phase and the
filament becomes smaller and more intense, the self-focusing
effect is counterbalanced by diffraction. This leads to the
possibility of a nonlinear inhomogeneous equilibrium—a
steady-state, high-intensity, low-density filament in which the
plasma pressure outside is balanced by the ponderomotive
force of the light inside. This nonlinear phase of the instability,
which produces the highest intensities and is therefore of the
greatest practical interest, is difficult to treat analytically
because of the strong density and intensity inhomogeneities
associated with such a filament. The nonlinear stage of
filamentation is usually studied using simulation codes that
directly integrate the equations of motion for the fields and
particles or fluids.2 One important problem that is difficult to
study in this way, however, concerns the long-term stability of
the nonlinearly saturated filament, once formed. A stable
filament would have a greater influence on absorption
nonuniformity and on beam bending3—important consider-
ations for direct- and indirect-drive laser-fusion schemes,
respectively. It would also be expected to make a greater
contribution to parametric instabilities.4–6 An investigation of
the stability of a filament through simulation would require the
simulation to cover a large spatial extent of plasma over a long
period of time. At present, due to computational limitations,7

such extensive simulations necessitate some approximations
in the equations used to describe the filament, in particular the
paraxial approximation to the wave equation for the light
propagation. This approximation requires that the propagating
light not develop wave-vector components that deviate far
from the initial direction of the beam. Recent studies8 indicate,
however, that the filaments most likely to be stable are very
intense and have very small radii, of the order of the light
wavelength, so that the paraxial approximation is question-
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able. Moreover, a simulation can treat only one specific set of
irradiation and plasma parameters at a time, and extrapolating
from simulations based on a limited sampling of parameter
space to general results on stability is problematic.

A purely analytic approach to filament stability requires
many approximations and idealizations to render the problem
at all tractable; for this reason applying the few results that
have been obtained analytically to realistic filaments is diffi-
cult. These results do suggest, however, that filaments may be
unstable to kinking or bending perturbations9 and to necking
or “sausage” perturbations,10 with the latter having a faster
growth rate.

In this article the stability problem of a realistic filament
will be addressed for the first time using a semi-analytic
approach. A dispersion relation is obtained that describes the
linear growth of a sausage-type perturbation of a self-consis-
tent, self-focused cylindrical filament in equilibrium. This
dispersion relation is analogous to the simple polynomial
dispersion relations obtained for the instabilities of a plane
electromagnetic wave in a homogeneous plasma.11 Rather
than being a polynomial in the perturbation wave number and
frequency as in the homogeneous case, however, the filament
dispersion relation depends on these quantities through ordi-
nary differential equations that must be solved numerically for
each value of the frequency and wave number. This is still
much easier than the simultaneous solution of several coupled
partial differential equations as required by a simulation, yet it
allows the consideration of a physically realistic filament
equilibrium, arbitrarily long space and time intervals, and the
use of the full wave equation to describe the light propagation.

We will show that filament stability depends crucially on
filament size. First, consider the case where the filament is
small enough that only one waveguide mode will propagate.
The pump (laser) light propagates through the filament in this
fundamental mode at frequency ω0 and axial wave number k0.
Amplitude modulation (sausaging) results from adding a per-
turbing light wave in the same mode at a differing frequency
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ω0 + ∆ω and wave number k0 + ∆k,  ∆ω and ∆k being related
by the dispersion relation for the waveguide mode. This
intensity modulation itself has frequency ∆ω and wave number
∆k and tends to move along the filament at the waveguide
group velocity ∆ ∆ω k , which in general is comparable to the
speed of light. Because the speed of the perturbation greatly
exceeds the ion-sound speed, the perturbation interacts weakly
with the surrounding plasma, limiting potential growth rates.
A much stronger interaction can be expected if the filament is
large enough to allow two or more waveguide modes to
propagate. In this case the perturbing light can be in a second
mode with a different dispersion relation. Thus, it can have a
frequency ω1 ≅  ω0 but a significantly smaller axial wave
number k1 < k0, so that ∆ ∆ω ω ωk k k= −( ) −( )0 1 0 1  is much
smaller than the speed of light and can be comparable to the
ion-sound speed, leading to an enhanced interaction.

To explore these ideas quantitatively, we consider an equi-
librium filament consisting of a low-density cylindrical chan-
nel in a higher-density homogeneous background plasma. The
channel is formed by the ponderomotive pressure of light
propagating within the channel in the fundamental waveguide
mode. Assume that in equilibrium the axis of the filament lies
in the z direction and the filament intensity and density vary
only as a function of r. Write the electric field E0 of the pump
wave as
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so that ψ0 represents the oscillatory velocity v0 = eEmax/mω0
normalized to νT, the electron thermal velocity. The pump
satisfies the wave equation in cylindrical geometry
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with boundary conditions ψ0(r) → 0 as r → ∞, (dψ0/dr)r = 0
= 0 for a bound-state waveguide mode propagating in a
cylindrical filament. The square of the plasma frequency
ωp r0

2 ( ) is proportional to the density, which is determined by
pressure balance with the ponderomotive force of the pump:
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where N0 is the background density outside the filament and nc
is the critical density. Equations (2) and (3) give a nonlinear
differential equation for ψ0, which together with the boundary
conditions results in an eigenvalue problem determining k0,
ψ0, and the filament density profile n0(r). The pump propa-
gates in the fundamental mode; however, if the filament is deep
and wide enough, higher-order waveguide modes will also
propagate in it. These eigenmodes satisfy the equation
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where j = 0 represents the fundamental mode, s ≡ ω0r/c, and
the eigenvalue Γj determines the relation between the axial
wave number kj of the eigenmode and its frequency
ω ω ω ωj j j jc k: 2 2

0
2 2

0
2− = Γ . In general, the spectrum of

eigenvalues Γj will contain discrete values for bound modes
with Γ j cN n− 0  and a continuum of unbound modes with
Γ j cN n− 0 . Since we are interested in instability, we will
be primarily concerned with the bound modes; the unbound
modes propagate away from the filament before they have an
opportunity to grow significantly. The eigenfunctions are
orthogonal and assumed normalized to unity. The pump is
assumed proportional to the fundamental eigenmode:
ψ α φ0 0 0s s( ) = ( ) , where α0 may be taken real and represents
the pump amplitude.

We employ fluid equations for the plasma density; lineariz-
ing n around the equilibrium density profile n0(r) results in an
inhomogeneous driven wave equation for the density perturba-
tion n1(r,z,t):
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where cs is the ion acoustic speed, Z and M are the ion charge
and mass, respectively, and Fp is the ponderomotive force
resulting from the electromagnetic waves.

The density perturbation n1 is assumed to have real wave
number k in the z direction (along the filament) and frequency
ω, which may be complex: n r z t n r ei kz t

1 , ,( ) = ( ) +−( )ω c.c.  The
interaction of the density perturbation with the pump generates
a perturbed electromagnetic wave:



STABILITY OF SELF-FOCUSED FILAMENTS IN LASER-PRODUCED PLASMAS

LLE Review, Volume 80 193

ψ ψ

ψ

ω ω

ω ω

1
0 0

0 0

r z t r e

r e

i k k z t

i k k z t

, ,( ) = ( )



+ ( ) 



+

+
+( ) − +( )[ ]

−
−( ) − −( )[ ] c.c.,

where, since the frequency ω may be much smaller than ω0,
both upshifted and downshifted terms are kept. The linearized
wave equation then becomes
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The first-order ponderomotive force resulting from the beating
of the pump and perturbed electromagnetic waves is
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In Eqs. (6) and (7) we have introduced the dimensionless
quantities Ω = ωc/ω0cs, κ = ω0k/c, ς = ω0z/c, and τ = csω0t/c.
Substituting Eq. (7) into Eq. (5), we obtain an equation for the
perturbed density in terms of the perturbed electromagnetic
fields:
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It is useful to expand the electromagnetic fields in terms of the
orthonormal eigenfunctions φj(s) of Eq. (4):
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satisfying the boundary conditions ′ ( ) =η j 0 0  and outgoing
waves as s → ∞, we see from Eq. (8) that the density perturba-
tion can be written as
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Combining Eqs. (6) and (10) then gives a linear relation among
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where the Ljj� denote the integrals over the wave functions:
L s s s sdsjj j j′

∞
′= ( ) ( ) ( )∫ φ η φ

0 0 .

While the sums in Eq. (11) extend over an infinite range of
j, only the finite number of discrete bound states are of interest
in studying instabilities, and in small filaments only a few of
these may exist. Truncating the sums in Eq. (11) to the bound
states leads to a finite set of linear homogeneous equations in
the β j

± , and setting the determinant of the coefficients to zero
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gives a dispersion relation relating Ω and κ. Unlike the homo-
geneous case, however, this dispersion relation is not a polyno-
mial but a more complicated function of Ω and κ, since the
coefficients Ljj� depend on Ω and κ through the solutions of
the differential equation (9). These solutions are readily ob-
tained numerically, however, allowing the evaluation of the
dispersion relation and the determination of the unstable modes
of the filament and their growth rates.

As an example, consider a background plasma with a
uniform density of half-critical, N0/nc = 0.5, and an ion sound
speed of cs = 10−3 c, corresponding to an electron temperature
of approximately 1 keV. For a given central field amplitude
ψ0(0), the filament density and intensity profiles are found by
integrating Eqs. (2) and (3), adjusting the axial wave number
k0 so that the boundary conditions are satisfied. The waveguide
modes are then found from Eq. (4). At this density and tem-
perature a central intensity of ψ0 00 7( ) ≡ =v vT  is found to
be sufficient to produce a filament wide enough to allow
two electromagnetic modes to propagate. The resulting pump
field amplitude and filament density profile are shown in
Fig. 80.3(a), and the two normalized waveguide modes are
shown in Fig. 80.3(b).
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Figure 80.3
(a) Self-consistent equilibrium field and density profiles for a filament with
background plasma density n0/nc = 0.5 and central intensity ν0/νT = 7; (b) the
two normalized bound eigenmodes for this filament.

The temporal growth rates and real frequencies for pertur-
bations having the form of the fundamental eigenmode are
shown in Figs. 80.4(a) and 80.4(b), plotted against the normal-

ized axial wave number κ. The group velocity of the perturba-
tion normalized to the sound speed can be obtained from the
slope of the real frequency curve in Fig. 80.4(b) and, as
expected, is near the speed of light: νg/cs ≅  900 (recall c/cs
= 1000 in this example). Thus, a perturbation will propagate
along the filament at nearly the speed of light as it grows,
leading to a spatial growth rate that can be estimated by
dividing the temporal growth rates in Fig. 80.3(a) by νg/cs
≅  900. This spatial growth rate is quite small, of order
10−4 ω0/c. For a typical laser-fusion experiment wavelength of
0.351 µm, for example, a small perturbation to a filament could
propagate for several thousand microns before becoming large
enough to disrupt the filament. Laser-produced plasmas of
interest are generally much smaller than this, so that small
filaments (radius < one wavelength) are effectively stable to
perturbations of this form.
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Growth rates (a) and real frequencies (b) for perturbations in the form of the
fundamental eigenmode (solid line) in Fig. 80.3(b).

The situation is more interesting for filaments large enough
that two or more waveguide modes will propagate. Fig-
ures 80.5(a) and 80.5(b) show the temporal growth rate and
real frequency for the perturbation corresponding to the second
waveguide mode for the same filament parameters as in
Fig. 80.4. Note that the growth rate is now considerably larger,
but more significant is the fact that the axial wave number of
the perturbation (given by the difference in the two waveguide-
mode wave numbers) is much larger than in the single-mode
case. This makes the group velocity [Fig. 80.5(c)] at which
the perturbation propagates much smaller, and the resulting
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spatial growth rate much larger. This effect is due to the fact
that having two different dispersion relations for the interact-
ing modes allows larger values of ∆k for a given ∆ω. More
importantly, however, the fact that the group velocity in
Fig. 80.5(c) passes through zero suggests the possibility of an
absolute instability, which grows without propagation. If we
define κmax to be the value of κ  for which the temporal growth
rate in Fig. 80.5(a) is a maximum, and Ω Ω Ωmax max max, ,′ ′′  to
be the corresponding frequency and its first and second deriva-
tives with respect to κ, the condition for absolute instability
is12
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Evaluation of these quantities shows that this condition is well
satisfied (the left side in this example is 0.164, and the right is
0.047), so that the instability is indeed absolute. This means
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Growth rates (a), real frequencies (b), and group velocities (c) for perturba-
tions in the form of the second eigenmode (dashed line) in Fig. 80.3(b).

that the perturbation will remain in place as it grows, rather
than propagating along the filament. Unless saturated by some
nonlinear mechanism, such an instability would be expected to
quickly disrupt the filament.

When the filament is large enough that many modes will
propagate, one approaches a “classical” regime where the
propagating light may be treated by the paraxial approxi-
mation or ray tracing. From the above analysis it is expected
that such filaments would be unstable, which seems to be the
case in simulations.7,8

The above stability analysis has been concerned with a
sausage-type perturbation, i.e., one with no azimuthal varia-
tion in the cylindrical coordinates centered on the equilibrium
filament. “Kink-type” modes, with nonvanishing azimuthal
wave numbers, could be treated using a straightforward exten-
sion of the above analysis. Such modes would, of course,
require a filament large enough to carry these higher-order
modes, so small single-mode filaments would be unaffected.
Larger filaments could be unstable to both kink and sausage
perturbations; which one dominates in practice is a subject for
further research. Another topic requiring further study is the
effect of plasma inhomogeneity, though by analogy with other
wave–plasma interactions, inhomogeneity might be expected
to reduce instability growth rates.

In conclusion, the first analysis of filament stability using a
realistic self-consistent filament equilibrium and a wave-equa-
tion treatment of light propagation has been carried out using
a semi-analytic approach. It is found that small filaments that
carry light in only one waveguide mode have only a weak
convective instability and, in most cases of interest in laser–
plasma interactions, may be regarded as essentially stable.
Filaments large enough to carry two or more waveguide modes
are unstable to sausage-type perturbations, which can be abso-
lutely unstable and may lead in typical cases to distortion or
breakup of the filament within a few tens of microns.
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