M easurement Technique for Characterization of Rapidly
Time- and Frequency-Varying Electronic Devices

The conventional method for measuring the transfer function
of an electronic device uses Fourier transform theory and
convolutionsand is, therefore, limited to either time-invariant
or frequency-invariant devices. The measurement technique
presented here enables the compl ete characterization of elec-
tronic devices having any dynamic temporal and spectral
frequency response. A technique presented earlier! applied the
windowing of signals in the time and frequency domains
(called time-frequency distributions) to characterize photo-
conductiveswitchesthat vary intimeand frequency; however,
windowing requires a slowly varying envelope approxima-
tion, which limits the allowed rate of temporal and spectral
variations. The more general technique allows us to measure
the frequency response of the optoelectronic (photoconduc-
tive) microwaveswitcheson OM EGA's pul se-shaping system.
Unlike microwave diode switches, photoconductive switches
do not have a constant conductive on-state, but rather decay
monotonically to the off-state after the illumination ceases. A
completelinear model for such adevice must incorporate both
filtering and modulation into ageneral time-varying filter (or
equivalently, band-limited modulator). Any microwave or
millimeter-wave device whose properties vary rapidly re-
quirestheapplication of thistechniquefor complete character-
ization, including elements that depend on charge-carrier
dynamics such as photoconductive attenuators, phase shifters,
and directional couplers.

The general concept of alinear, time-varying filter is well
established in the signal-processing, 23 communication,* and
automatic control °fields. I nthe microwave-devicefield, how-
ever, the linear variations of filter properties aretypically due
to slowly varying mechanisms(e.g., mechanical) or are gener-
ated by rapid transitions between steady-state regimes (e.g.,
microwave diode switches); therefore, aform of windowingis
usually adequate for characterization. The analysis presented
hereintroducesacharacterization technique anal ogousto (and
a superset of) aform of input—output relationships called the
scattering or Sparameters, which can beapplied to devicesthat
can be considered linear filters with rapid modulation of
amplitude and/or phase (e.g., photoconductive switches). In
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the next section we briefly discuss the complementary rela-
tionship betweenlinear filtersandlinear modulators. Fromthis
conceptual viewpoint, we derive an extension of thefilter and
modul ator characterization functions S(w) and k(t) toageneral
linear device characterization or system function é(w, t).
Based on the limitations of conventional S-parameter analysis
in the Mathematical Formulation section, we present some
important properties of the S parameter and explain condi-
tionsunder which thisform of analysiscan beimplemented. In
the Analytical Example section we apply our é—parameter
concept todeviceanalysisby considering asimplified lumped-
element example, deriving the S parameters from the theory
and directly from the differential equations, and demonstrate
the limitations of windowing. Photoconductive switches used
on OMEGA pulse shaping have been optimized through the
application of the é—parameter technique; theseresultswill be
presented in a separate article.

Background

Conventional microwave device characterization depends
on shift-invariant device models for characterization, taking
advantage of the property that a convolution in one domain
Fourier transformsto multiplication inthe other. In Table 78.V1
the canonical input—output rel ationships of thetwoideal shift-
invariant microwave devices are presented to emphasize their
complementary nature. All dependent variables are complex,
a(w) and b(w) arethe Fourier transformsof therespectiveinput
and output temporal power waves A(t) and B(t), S(w) and h(t)
are the scattering parameter and its Fourier transform (the
impulse response), k and K are the modul ation parameter and
itsFourier transform, and the subscriptsrefer to themicrowave
input—output ports of the device. Thelinear-frequency-invari-
ant (LFI) model of a modulator is valid when narrow-band
input signals(relativeto themodul ator bandwidth) areapplied,
and the linear-time-invariant (LTI) filter model isvalid when
the device's temporal variations are longer than the signal
duration. Note that here and throughout this article, for the
convenience of using notation familiar in measurement prac-
tice, we use wfor jewand draw no distinction between real and
analytic time-series signals.
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Table 78.VI: A comparison of the transfer functions of shift-invariant devices: an ideal, linear-time-invariant
(LTI) filter and frequency-invariant (LFI) modulator.

Time Domain Frequency Domain
Time-invariant filter B(t)= thj (t-1)Aj(r)dr b (w) = Sj ()[4 ()
Freguency-invariant modulator B (t) = kij (t) CA (1) by (w) of Kij (- §[4;( &) dé

The analysis based on the equationsin Table 78.VI cannot
be applied to a device that is neither time invariant nor
frequency invariant. As Fig. 78.47 indicates, a time-varying
filter will have different impulse responses at different times
[(b) and (c)], or equivalently amodul ator with finite frequency
response will modulate different frequencies differently [(d)
and (e)]; so neither model in Table 78.VI is adequate for
complete characterization. If thedevicecan beheld constantin
one domain independently of the other, or if the variations
are slow relative to the signal applied, conventional analysis
can beapplied by using someform of windowing; inaccuracies
will depend on how strongly the LTI or LFI assumptions are
violated. If thefiltering and modulating aspects of thisgeneral
linear device cannot be controlled independently (i.e., cannot
be made separable) and the variations in time and frequency
are rapid, characterization of the device under test (DUT)
using either k(t) modulator functions or S ¢) filter parameters
cannot account for complete device behavior. Since conven-
tional methods of linear microwave circuit characterization
(e.g., spectrum and network analyzers) are based on the appli-
cation of Fourier transforms and the convolution integral,
their use can lead toincorrect or even misleading characteriza-
tion results.

Motivated by these limitations, we combine the separate
(but complementary) one-dimensional (1-D) LTI and LFI
transfer functions to a single two-dimensional (2-D) transfer
(or system) function, calling it é(w,t) to emphasize its simi-
larity to conventional S(c) parameters. For illustration, a
conceptual example of the amplitude of an exponentially
decaying, low-pass filter is shown in Fig. 78.47(f). This 2-D
parameter can bemoredifficult to measurethan aconventional
device's S(w) parameters; however, the measurement process
can be simplified by taking advantage of the 2-D nature of S
and using methods that are not applicable 1-D functions. For
example, the theory of generalized projectionsas used in 2-D
phase retrieval allows us to reconstruct the full, vector (com-
plex) 2-D transfer function S by measuring only the magni-
tude 19, Although generalized projections are restricted to
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functionsthat are zero outside some finite temporal and spec-
tral window (i.e., that haveknown, compact support along both
axesd), in practicethetransfer functions of microwave devices
satisfy this criteria.

é(w,t) can be applied to device characterization in the
frequency domain or the time domain. Conceptualy, in the
frequency-domain approach a single-frequency wave can be
applied to the DUT for the time duration of interest, and then
the temporal evolution of the resulting output signal’s ampli-
tude and phase can be recorded. Next, to separate the device's
effect on signal amplitude and phase, the same input wave is
applied, phase shifted by 774, over the same time duration
relative to the trigger, and again the temporal evolution of
amplitude and phase is recorded (i.e., this is equivalent to
measuring the analytic signal). Finally, by reapplying signals
at different frequencies, amap of é(a), t) can be generated for
the DUT by constructing successive time slices at each fre-
guency. Alternatively, in the time-domain approach a series of
impul se functions can be applied at appropriate timeintervals
over the period of interest, and the impulse response corre-
sponding to each input can be recorded. Although these de-
scriptions are intuitively appealing, it may not be readily
apparent how to extract an input—output relationship such as
é(w,t) from the measured signals, apply it to the calculation
of output signals given an arbitrary input signal properly, and
avoid the effects of windowing. The following analysis will
clarify the technique and the method of calculation.

Mathematical For mulation

To derive a combined system function é(w, t) that is ca-
pable of characterizing the input—output relationships of de-
vicesthat are neither exclusively modulators nor filtersand is
easily determined by measuring the incident and emerging
signals, we must revisit some of the assumptions used in
microwave circuit/network analysisand synthesis. To empha-
size the utility of our more generalized transfer function, we
will frame our discussion in terms of filters and S-parameter
characterization; however, the system function é(w,t) sub-
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sumes both LFI and LTI devices as special cases, so it is
equally applicableto modulators. Theroutetakenismotivated
by the observation that, in the equations for filters and modu-
lators presented in the previous section, the roles of time and
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Figure 78.47

(a) Signal flow for ageneral linear-time- and frequency-varying device. Time
variationisshown schematically by (b) identical impulsesapplied at different
times, which result in (c) different impul se responses. Frequency variationis
shown by (d) two different input sine waves and (e) differences in their
modulated output spectral functions. (f) A representative sketch of the
magnitude of the resulting transfer function é(w, t) shows exponential time
decay and low-passfiltering, such as might occur with OMEGA’ s photocon-
ductive switches.

LLE Review, Volume 78

MEASUREMENT TECHNIQUE FOR CHARACTERIZATION OF RAPIDLY TIME- AND FREQUENCY-VARYING ELECTRONIC DEVICES

frequency are complementary, i.e., the 1-D characterization
functions are along orthogonal axes in the complex plane.
From this comes the readlization that a more general, 2-D
characterization is possible by considering and measuring the
device's response on the entire plane.

A convenient placeto begin the derivation iswith thetime-
domain differential equation describing a linear lumped-ele-
ment device with time-variable coefficients:

dn dn—l
ar0(t) i BLY) * a1(0) oy B(O) +-+ +a (1) B(Y)
=2 (p,t) B(t) = A(t), 1

where the coefficients a are determined by the (time-varying)
dependencies between the ports (e.g., the lumped-element
models of resistance, capacitance, and inductance). The sig-
nalsA(t) and B(t) aredefined asin Table 78.V1, and we' veused
the operator notation

L(p) = ag(t)p" +ay(t)p"t+--- +ary(t),

wherepisthedifferential operator d/dt.” Notethat althoughthe
following derivation is for a device with a finite number of
(time-varying) poles and zeros, é(w,t), like S(w), isequally
applicable to distributed-element devices.

For the ideal filter model there is no time variation in the
coefficients and Eq. (1) ssimplifiesto

i (p) Bu(t) = A (1) 2

Assuming complex exponentials for the basis functions (so
that the differential operator becomes w) and converting to
S-parameter notation §;(w) = ji(p), we derive the fre-
guency-domain filter transfer function of Table 78.V1, and the
processisanal ogousfor theideal modul ator model. The use of
complex exponential basis functions as solutionsin the trans-
form integral leads to the formalism of Fourier transforms.
Fourier transformsare useful for microwave-devicecharacter-
ization because they transform between a system of differen-
tial equationsand asystem of algebraic equations; that isto say
they are compatible integral transform operators.8 Non-
compatible transforms do not result in simple convolution or
multiplicative relationships between input and output ports.
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In contrast to ideal modulators and filters, for a general
deviceacompatibleintegral transform operator dependsonthe
functional form of the variable coefficients in Eq. (1). This
means that the basis functions are not, in general, eti®t but
rather are dependent on the particul ar form of modulation and
frequency response. To keep the analysis independent of the
details of the modulation and frequency response, we will
choose a noncompatible transform such that we are able to
continueto use et “ hasisfunctions; thisisthekey point of this
characterization technique. Some important implications of
this choice will be mentioned as we derive properties of the
system function resulting fromthischoiceof integral transform.

A definition of the general linear device system functionis

§j(wt)= B'—(tt)) 3)

which differs from the traditional S-parameter definition
in that it is now a function of time as well as frequency. In
addition §;%(w,t) = £;;(p.t), wherethe differential operator
p transforms to w by differentiation of e therefore,
B(t) = SJ (w,t)el®t s the output of the device for an input
At = g™ given that the deviceisin aknown state at every
time t > t; (i.e, the variable coefficients evolve determin-
istically from time t = tg). Due to the linearity of the device,
by superposition the output Bj(t) is defined in terms of A(7)
according to

a(t)=iﬁ,- (1) A D). @

Equation (4), where the impul se response function b i(tt)is
now the more general Green’s function, isageneralization of
the time-invariant convolution in Table 78.VI in that the
impulse response no longer depends only on the age from
impulse time T to observation t. Substituting Eq. (4) into
Eq. (3) resultsin atransform rel ationship between the system
function é(w, t) and the new generalized impulse response

Fﬁj (T.1):

Sj(wt) = oj:ﬁij(T,t)e‘j“’(t‘T)dr. (5)

Notice that (2) Sc,t) and ﬁij (t,t) are related by a Fourier
transform of the first axis and (b) two other system function
definitionsresult fromtransforming each of theseinthe second
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variable. We canvisualizethefundamental differencebetween
(a) these 2-D system functions that are characterizations of
time- and frequency-varying devices and (b) system functions
that are determined from windowed signal s the feature size of
a 2-D system function (the mountains and valleys of the
surface plot) along one axis is independent of the other axis,
whereas (due to the uncertainty principle) the features of a
system function along each axis generated by windowing are
related to each other by the Fourier transform. In other words,
anarrow windowing of asignal in time (necessary to prevent
averaging of the system’s time fluctuations) implies a widen-
ing of the spectral window (which forces averaging over
spectral fluctuations), and vice versa. In the next section we
show this difference in more detail by applying ambiguity
functions and time-frequency distributions.%-12

FromEqg. (4) weget arelationship between_ input and output
by replacing Aj(t) withitstransform [ a; (w)e! wtde,inverting
the order of integration, and substituting from Eq. (5):

B (1) = F {5 (0)a (e} ©)

where the differential transform operator %~1{ } is essen-
tially theinverse Fourier transform but with thevariablet held
as a constant parameter. Equation (6) is similar to the fre-
guency-domain filter relation in Table 78.VI in that the signal
B(t) isthe transform of the product of the S(or in this case é)
parameter and theinput spectral function. Unlike conventional
Fourier transforms, however, Eq. (4) isnot aconvolution, and
theargument insidethe bracketsof Eq. (6) isnot the product of
two 1-D functions; therefore, it is not possible to relate the
output signal algebraically to the input signal:

b (@)  §j(wt)ay (o). (7)

Importantly, the completefunction é(w, t) cannot befound by
taking a quotient b(w)/a(w) asit can be when finding ()
for LTI devices. For network synthesis, where a model (or
equivalently adifferential equation) must be synthesized from
agiven (measured) é(w,t) or G(1,t), thisconsegquence of non-
compatible transforms has no major implications and in fact
choosing the noncompatible Fourier transform allows one to
use standard transform tables, making the synthesiseasier. For
network analysis, however, where the output B(t) isfound in
terms of A(1), the significance of Eq. (7) is that only simple
linear time- and frequency-varying device models (having
first- or second-order differential equations) can be used since
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signal flow graphs and the combination of series and parallel
devices are no longer algebraic or even analytic, as explained
in the next paragraph.

For network analysis using é(w, t) of microwave systems
with time- and frequency-varying elements, the network must
bebroken downinto block diagramswherethelinear time- and
frequency-varying element is isolated from the rest of the
(conventionally analyzed) LFI or LTI components. The block
diagram approach then requiresoperational methodsthat com-
binethegeneral linear element with other components, bothin
cascade and parallel, to determinethe overall system function.
For two linear devices in parallel this istrivial; they can be
combined by adding their impulse response functions, or
equivalently adding their transfer functions.13 For two devices
in series, however, the combination depends on shift invari-
ance: the overall transfer function of two LTI devicesin series
is accomplished by multiplying the individual transfer func-
tions together, or equivalently convolving their impulse re-
sponses. For two L FI devicesin seriesthetransfer (modul ation)
functions are multiplied, while the spectral transform of the
modulation is convolved.

Toderivethetransfer function of two general linear devices
in series, we begin with the repeated operation of the transfer
function (in operational form):

po)fa@)] =5(pO{S(p)[aa} .  ®

where éa(p t) and éo(p t) are the transfer functions for the
first and second device, respectively, and a(w) = el isas-
sumed. Since ,(p.t) will operate on both S,(p,t) [now
%(w t) due to the form of its operand] and A(t), we get

Selet = §[piu 2§ +§ el
9)
= § 28+ Gaeld

and therefore

Spt)aw) =5(p+at)S(p)a(d). 10
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Analytical Example

To demonstrate the application of S to microwave-device
characterization, arepresentative lumped-element device will
be solved analytically. The device shown in Fig. 78.48 isa
single-pole, low-pass RC filter with a sinusoidally varying
capacitive element C(t) = Cy +Cpysin(wpt), where stitable
values of the variables are chosen for convenience: Cy =1 pF
is the steady-state capacitance, C,/Cq =0.2 isthe modula-
tion depth, and wy, = 2.3 Grad/s is the modulation rate.

-« ¢ /\/V\/\ * _—

By(t), by(c) R /2« Ba(t), ba(c)
7 C(t)

A1), ag(w)

Ax(t), ax(w)

-

72405

Figure 78.48

An example linear device with a time-varying capacitance and therefore
time-varying pole location (bandwidth). Thisdeviceis linear but cannot be
modeled as only afilter or amodulator.

Thedifferential equationfor thisdevice, writtenintheform
of Eqg. (1), is

%C(t)(R+ 20)5% B(t)

+d+ 2 R/20 42 (R+20) L OOBO =AY (D)

dt

From Sparameter analysis the Sy, for a conventional LTI
filter like Fig. 78.48 is

27,
2Z5+R+jwCZy(R+20)

Sa(w) = (12)

Applying Eqg. (10) to the cascade elements of the resistor and
shunt capacitor, we get

= _ 27,
()= 27y +R+(p +jw)CZo [[R+Z5)’

(13)

which could also be found by directly solving the differential
equation in Eq. (11). The |Sy;(w)| plot for the LTI version of
this device (where the time invariant C = Cg) is shown in
Fig. 78.49, and |821 () | is shown in the elevation plot of
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Fig. 78.50for onecycleof modulation. Observeinbothfigures
the low-pass attenuation along the frequency axis and for
Fig. 78.50thesinusoidal modulation of thefrequency response
along the temporal axis.

To further illustrate the properties of the time-varying
system function we show a surface-density plot of |§(wt)|
(Fig. 78.51) over several cycles of modulation and from dc to
50 GHz. Figure 78.51 will also be used in conjunction with the
windowed signal to show the limitations of windowing. An
aspect of this S shown clearly hereisthe skew in the peak of
the temporal modulation near the 3-dB point of 6.1 GHz, due
to the phase shift in the transmission function that occurs at
this frequency.
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Figure 78.49
Magnitude of the transfer function | S,;(w)| of alow-pass, single-polefilter
that isequivalent to the circuit in Fig. 78.48 but with no time-variationin the
capacitance.

Figure 78.52 is a cross section of the transfer function
along the time axis, showing the modulating aspect of the
device, which is seen to be frequency dependent.The cross
sectionsof |3 along the frequency axis (Fig. 78.53) show the
low-pass filter effect of the device and indicate that the shape
of the frequency response depends on time. Although stability
considerations are outside the scope of this article, both
Figs. 78.52 and 78.53 indicate that the instantaneous magni-
tude can rise momentarily aboveunity, resultinginagaininthe
system over ashort time span and finite spectral band. Modu-
lating the capacitance causes atransfer of energy in and out of
the system, and with proper terminationsit ispossibleto create
an oscillator.
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Figure 78.51

Surface-density plot of é(w,t)| for six cycles of modulation along the time
axis and demonstrating low-pass filtering along the frequency axis.
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Figure 78.50

Magnitude of thetransfer function | §21(w,t)| of alow-pass, single-polefilter
with sinusoidally varying capacitance, plotted over one cycle of modulation
in time and over 150% of the bandwidth in frequency.

Figure 78.52

A series of cross sections through |§(wt)| along the time axis, showing
the change in the magnitude and phase of the modulation for different
frequencies.
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Using Egs. (6) and (13) we simul ated the propagation of the
sum of 5.9- and 19.5-GHz sine wavesthrough the device. The
attenuation and dispersion of each spectral component are
demonstrated in Fig. 78.54, where the low-pass features are
readily apparent in the output signal (solid line) as compared
with the input signal (dashed line). The influence of the
modulation can best be compared in Fig. 78.55, where the
sinusoidal modul ation putsdiscrete sidebands on each spectral
component; however, since only magnitude is plotted, the
phase shift of the modulation between different frequencies
cannot be observed. Sincethisdevice not only modulates each
frequency differently but also filtersthe signals, application of
network or spectrum analysiswould not adequately character-
ize the device.
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Figure 78.53
A seriesof crosssectionsthrough S(w,t) along thefrequency axis, showing
the change in instantaneous bandwidth at different times.
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Inthe remainder of this section we usewindowed signalsin
an attempt to adequately characterize our time-varying filter
with conventional S-parameter analysis, and we compare the
results to our previous approach. For the windowing we use
time—frequency distributionsbecause of their appealing repre-
sentation, and because they more intuitively demonstrate the
fundamental constraint; due to the uncertainty principle, a
narrow windowing in time necessarily leads to a broad fre-
guency window. Thisis seen on atime—frequency representa-
tion by the phenomenon of minimum area: a surface-density
plot of the time—frequency distribution of asignal consists of
areas(or regions) wherethesignal existsat alocalizedtimeand
frequency, which cannot be small er than aconstant determined
by the uncertainty principle. The uncertainty is inherent to
windowing in general and not time—frequency distributionsin
specific, so therefore the choice of specific time-frequency
distributions to demonstrate the uncertainty limitations of
windowing doesn’t detract from the generality of the result.

Todemonstratethelimitationsof windowing, theparticular
choice of agorithm to generate a time—frequency representa-
tion is a matter of convenience: for this example we will use

Alw;t) = }o Alt) we 1@ (=1 gt (14)

where A(w;t) isthe time-frequency distribution of A(t) and a
semicolon is used between the joint time-frequency variables
to stress the dependence of the axes. This definition has the
virtues of showing all the essential features of time—frequency

Signal (dBc)

0 5 10 15 20 25
Frequency (GHz)

72427

Figure 78.54
Plot of input and output signals showing the DUT’ slow-pass filtering effect.
Dashed line isthe input signal; solid line is the output signal.

Figure 78.55
Spectral plot of output signal, showing the change in modulation character-
istics for different frequencies.
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distributions and (due to the use of a Gaussian window) being
easily transformable back into the Fourier transform of the
signal a(w) by integration:

00

a(w)= [ Alwt)dt

—00

(15)

Figure 78.56 shows an example windowed signal to be
propagated through our system: a2-GHz sinewavethat abruptly
transitions after 1.28 ns (with broadband noise) to a 20-GHz
sine wave. The smearing of the signal in time (for the low-
frequency signal) and frequency (for the high-frequency sig-
nal s) dueto windowing trade-offs (which are ultimately dueto
the uncertainty relationship) can be easily seen. The use of the
FFT to generate the time—frequency distribution (which as-
sumes a continuous, periodic signal) caused leakage to occur
across the time boundary (top and bottom) of each spectral
component of the signal; for the low-frequency signal, the
leakage is significant enough to bridge the span over which it
is ostensibly “off.”
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Figure 78.56

Time—frequency representation (ambiguity function) of a 2-GHz sine wave
that transitions abruptly to a 20-GHz sine wave with broadband noise at
the transition.

By multiplying the input signal A;(wit) of Fig. 78.56 with
the system function Sy;(w,t) of Fig. 78.51 we get the time—
frequency distribution of the output signal By(w;t) (shown
inFig. 78.57). Important featuresof theresulting output signal,
as evidenced in the time—frequency distribution, are the sig-
nificantly different modulation of each spectral component
and the low-pass filtering, which attenuates the high-fre-
guency component. Converting back to thetime domain using
Eq. (15) and then inverse Fourier transforming, we can com-
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pare the resulting output signal with our technique. The
windowing technique gives the solid linein Fig. 78.58, while
our resultisthedashedline. Itisevident that althoughwindowing
produced acceptable results for the second half of the signal
when the modulation was much slower than the signal
(i.e., the slowly varying envel ope approximation), for thefirst
half of the signal, the modulation was comparableto thesignal
frequency so the window effectively smeared the modulation

Time (ns)

50.0

25.0
Frequency (GHZz)

0.0 12.5 375

E9654

Figure 78.57

Time—frequency representation of the output signal, after multi plication of
the input time—frequency distribution with the system function S(wt). The
effect of the system function is shown by the attenuation of the broadband
noise and the ripple in the two spectral components of the signal.
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Figure 78.58

Time-domain comparison of output signals using the technique described in
this article (dashed) and the windowing method (solid). The windowing
appears acceptabl e for high-frequency signal component where the modula-
tion is gradual, but it washes out the temporal modulation for the low-
frequency component.
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in time. Choosing a narrower window would not solve the
fundamental problem sincedoing sowoul d necessarily broaden
the spectral window, causing increased smearing of the spec-
tral response.

Conclusions

The goal of thiswork isto completely characterize photo-
conductivemicrowaveswitchesregardl essof thetemporal and
spectral variationsin their frequency response (transfer func-
tion). The unique photoconductive properties of these devices
that enable their use in OMEGA's pul se-shaping system also
require a characterization technique that accounts for the
switch’s frequency and time variations simultaneously. The
analysis presented in this article provides such a characteriza-
tiontechniqueand iscurrently being applied to the switchesto
optimize their pulse-shaping performance. To characterize
such devices, wetake advantage of the complementary aspects
of LTI and LFI 1-D transfer functions and combine them into
asinglelinear device system function é(w,t) . This2-D trans-
fer function allows us to synthesize network models based on
measurements of device responses that vary rapidly in fre-
guency as well astime. We discussed several important prop-
ertiesof thisnew S parameter, showing similaritiesto conven-
tional S-parameter analysis that preserve most features of the
familiar Fourier transform tables. The transfer function of an
analytical linear time-varying device was cal culated and com-
pared to that of an LTI filter, and the utility of the é(w,t)
function concept was demonstrated while also showing the
limitations of windowing.
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